
Amir Ghaffari, Natalia Chechina, Phil Trinder

Introduction Step2 S 4

http://www.release‐project.eu/

Introduction

 RELEASE, an European project, aims to improve 

the scalability of Erlang.

 Erlang is an open-source functional programming

Challenge: Evaluate some popular DBMSs for Erlang, i.e. 

Mnesia, CouchDB, Riak, and Cassandra against the principles 

outlined in step1.

Step2 Step4
Challenge : Investigate the reasons for the Riak 1.1.1 scalability limitation.

Achievement:

• Measuring the processor, RAM, disk, and network usage shows that they 

can’t be a bottleneck for Riak scalabilityErlang is an open-source functional programming 

language for building parallel and distributed 

system.

 A key requirement for a scalable language is 

Achievement:
Mnesia CouchDB Riak Cassandra

Fragmentation •Explicit placement
•Client-server 
•Automatic by using 
a hash function

•Explicit placement
•Multi-server
•Lounge is not part of 
each CouchDB node

•Implicit placement
•Peer to peer
•Automatic by using 
consistent hash technique

•Implicit placement
•Peer to peer
•Automatic by using 
consistent hash technique

Replication •Explicit placement
•Client-server
•Asynchronous

•Explicit placement
•Multi-server
•Asynchronous

•Implicit placement
•Peer to peer
•Asynchronous

•Implicit placement
•Peer to peer
•Asynchronous

can t be a bottleneck for Riak scalability.

scalable persistent storage.

 This research tries to find a scalable persistent 

storage for Erlang.

Asynchronous
( Dirty operation)

Asynchronous Asynchronous Asynchronous

Partition Tolerant •Strong consistency •Eventual consistency
•Multi-Version 
Concurrency Control for 
reconciliation

•Eventual consistency
•Vector clocks for 
reconciliation

•Eventual consistency
•Use timestamp to reconcile

Backend Storage
&
Query Processing 

•The largest possible 
Mnesia table is 4Gb

•No limitation
•Support Map/Reduce 
queries

•Bitcask has memory 
limitation
•LevelDB has no limitation
•Support Map/Reduce 
queries

•No limitation
•Support Map/Reduce 
queries

• By instrumenting the global and gen_server OTP libraries we identify a 

specific Riak remote procedure call (start_put_fsm function from module 

riak_kv_put_fsm_sup) that fails to scale.

• To avoid single process bottleneck, in Riak version 1.3 get/put FSM 

processes are created directly on the external API-handling processes that 

Step1
Challenge: Indentify the principles of scalable persistent storage

Achievement: 

 Dynamo-style DBMSs like Riak and Cassandra can provide scalable 

persistent storage for Erlang

Step3

issue the requests, i.e. Riak_kv_pb object (protocol buffers interface) or 

riak_kv_wm_object (REST interface). 

Conclusion and Future Work
•Data Fragmentation:

Decentralized Model

Systematic Load Balancing

Location Transparency

• Replication:
Decentralized Model

Challenge : Investigate the scalability and availability of Riak in 

practice.

Achievement:

 We identified the requirements for scalable persistent storage and we evaluate 

some popular NoSQL DBMSs for Erlang against these requirements. We 

concluded that Dynamo-style DBMSs like Riak and Cassandra meet the 

requirements.

Decentralized Model

Location Transparency

Asynchronous Replication

•Availability:
Eventual Consistency

Reconciling Conflicts via Data Versioning

 Scalability benchmark shows that Riak 1.1.1 doesn’t scale beyond ~60 nodes. 

 The availability benchmark shows that Riak provides a good elasticity and a 

highly available and fault-tolerant service.

 we identify a specific Riak remote procedure call that fails to scale. We discuss 

how that single process bottleneck has been removed in Riak versions 1.3 and 1.4.

 The RELEASE project aims to improve the scalability of Erlang We hope that
Availability Benchmark

•Query Processing:
Location Transparency

Local Execution

Parallelism

 Riak version 1.1.1 doesn’t scale beyond 

~60 nodes 

 Riak provides a highly available and

fault-tolerant service

The RELEASE project aims to improve the scalability of Erlang. We hope that 

improvements can be leveraged into persistent storage engines implemented in 

Distributed Erlang.


