Contract number 287510

Project coordinator Heriot-Watt University

Project website www.release-project.eu

Contact person

RELEASE

A HIGH-LEVEL PARADIGM FOR RELIABLE LARGE-SCALABLE SERVER SOFTWARE

Multicores require radically new software development technologies

Phil Trinder School of Mathematical and Computer Sciences Heriot–Watt University Riccarton EH14 4AS Edinburgh, United Kingdom Tel: +44 131 4513435 Fax: +44 131 4513327 p.w.trinder@hw.ac.uk

The project will develop the first ever scalable concurrency-oriented programming infrastructure and its associated tool set, and hence aims to reduce development times of multicore solutions while delivering increased reliability.

Technical Context

Our platform builds on the Erlang language and Open Telecom Platform (OTP) libraries that have concurrency and robustness designed in.

Currently Erlang/OTP has inherently scalable computation and reliability models, but in practice scalability is constrained:

- Transitive sharing of connections between all nodes
- Explicit process placement makes irregular or dynamic process structures difficult
- > Existing profiling/debugging tools do not scale due to the volumes of data.

Conceptual view of Erlang's concurrency

Technical Approach

- Evolve the Erlang virtual machine for large-scale multicore systems
- Evolve the language to Scalable Distributed (SD) Erlang
- Adapt the OTP framework to provide
 - ✓ constructs to control process placement
 - ✓ reusable coordination patterns
- > Develop a scalable Erlang infrastructure to integrate multiple heterogeneous clusters
- Design tools to enable programmers to
 - ✓ profile
 - ✓ visualize
 - ✓ refactor
 - ✓ debug SD Erlang systems.

Strategic relationships between the partners

Demonstration and Use

We will demonstrate the effectiveness of the RELEASE approach by case studies

- The Sim-Diasca simulation framework on an IBM Blue Gene
- A heterogeneous cloud-based continuous integration framework service

Key Features

- > Improve the programmability of large off-the-shelf architectures by scaling the radical concurrency-oriented programming paradigm
- Facilitate the development of reliable general purpose systems to exploit 10,000 cores or more
- > Reduce development times providing state-of-the art tools to profile and control performance on large scale systems
- Provide case studies of highly concurrent simulation on the Blue Gene platform and a heterogeneous cloud-based continuous integration framework.

