

ICT-287510
RELEASE

A High-Level Paradigm for Reliable Large-Scale Server Software
A Specific Targeted Research Project (STReP)

D7.3 (WP7): Exploitation Plan for RELEASE

Due date of deliverable: 30.09.2013
Actual submission date: 14.10.2013

Start date of project: 1st October 2011
Duration: 36 Months
Lead Contractor: The University of Glasgow Revision: 0.1

Purpose: Summarize the exploitation activities to be done by the partners during the
project

Results:

• We have conducted a market analysis by providing an overview how different
programming languages support writing scalable, distributed software.

• We have summarized the advantages of the Erlang programming language

• We have identified the exploitable results of the RELEASE project

• We have created a SWOT analysis to investigate market findings at the current
stage of the project

Conclusion: There is a market need to strengthen the language support to write
disturbed software.

Project funded under the European Community Framework 7 Programme (2011-14)
Dissemination level

PU Public

ICT-287510 (RELEASE) 14 October 2013 2

PP Restricted to other programme participants (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services) *
CO Confidential only for members of the consortium (including the Commission Services)

Exploitation Plan for RELEASE
Author: eva.bihari@erlang-solutions.com

 Torben.hoffman@erlang-solutions.com
 Francesco.cesarini@erlang-solutions.com
 jesper.louis.andersen@erlang-solutions.com

	

1	 Executive Summary ... 3	

2	 Introduction ... 3	

3	 Exploitation ... 5	

4	 Market analysis .. 8	

4.1	 Introduction ... 8	

4.2	 Multi-core scalable programming languages .. 10	

4.3	 Popular languages which do not scale on multi core .. 12	

4.4	 The Erlang language ... 13	

4.5	 Results of the project ... 13	

5	 Exploitation initiatives ... 18	

5.1	 Wombat ... 18	

5.2	 Other areas .. 19	

6	 SWOT Analysis ... 20	

6.1	 Strengths .. 20	

6.2	 Weaknesses ... 21	

6.3	 Opportunities ... 21	

6.4	 Threats ... 22	

7	 Conclusion ... 22	

8	 Change Log ... 22	

ICT-287510 (RELEASE) 14 October 2013 3

1 Executive Summary
This deliverable defines strategy and plans exploitation activities of the RELEASE project.
The exploitation plan is strongly connected to deliverable D7.2: Dissemination and
Collaboration Plan. In this deliverable we discuss exploitation of the project results within
and beyond the project life time.

We start with identifying the potential exploitable elements. As the main objective is adding
new language elements and supporting tools to the Erlang VM and language our market
analysis includes by providing an overview of programming languages (Section 4). We
define Erlang programming language advantages and challenges related to the RELEASE
project, and outline exploitable components implemented during the project. Then in the
exploitation initiatives we cover consortium partner intentions to exploit individual project
results (Section 5). We conclude with a SWOT analysis that outlines market findings at the
current stage of the project (Section 6).

2 Introduction
The RELEASE project aim is to scale the radical concurrency-oriented programming
paradigm to build reliable general-purpose software, such as server-based systems, on

massively parallel machines (105 cores).

The exponential growth in the number of cores requires radically new software development
technologies. Many expect 100,000-core platforms to become commonplace, and the best
predictions are that core failures on such an architecture will be common, perhaps one an
hour. Hence we require programming models that are not only highly scalable but also
reliable.

The trend-setting language we use is Erlang/OTP that has concurrency and robustness
designed in. Erlang/OTP has inherently scalable computation and reliability models, but in
practice scalability is constrained by aspects of the language and virtual machine. Moreover
existing profiling & debugging tools don't scale.

The RELEASE consortium is uniquely qualified to tackle these challenges and we work at
three levels:

- Evolving the Erlang virtual machine so that it can work effectively on large scale
multicore systems;

- Evolving the language to Scalable Distributed (SD) Erlang, and adapting the OTP
framework to provide both constructs like locality control, and reusable coordination
patterns to allow SD Erlang to effectively describe computations on large platforms,

ICT-287510 (RELEASE) 14 October 2013 4

while preserving performance portability;
- Developing a scalable virtualization infrastructure capable of creating, managing

and dynamically scaling super-clusters of smaller heterogeneous clusters, based on
capability profile matching.

State of the art tools will be developed that allow programmers to understand the behaviour
of massively parallel SD Erlang programs. The effectiveness of the RELEASE approach
will be demonstrated by using demonstrators and two large case studies on a Blue Gene.
Erlang is a beacon language for distributed computing, influencing both other languages and
actor libraries and frameworks. Hence we expect the project to make a strong and enduring
impact on computing practice in the next two decades.

The aim of this deliverable is to highlight the potential for further dissemination and
exploitation. We start with providing a market analysis and concentrating on the current
state of the project’s tools and techniques in Section 3. We cover pointers for how best to
exploit our work further by discussing the project tools and outcomes individually in
Section 4, and providing a SWOT (Strengths, Weaknesses, Opportunities, Threats) analysis
in Section 5.

Partner Contribution to WP7. All partners contributed to the deliverable D7.3 by
providing corresponding information about the project results and exploitation activities.
We had multiple teleconferences and multi-partner face-to-face meetings.

ICT-287510 (RELEASE) 14 October 2013 5

3 Exploitation
RELEASE Project adds new language elements and supporting tools to the Erlang VM and
language, therefore it is essential to make the material and the result data as widely available
as possible. The real success of the project will be measured according to the dissemination
activities throughout the project and the exploitation of the developed material afterwards.

The materials and the results have been exploited as follows:

- Open Source Model

The partners who release their frameworks, tools and improvements to Erlang as open
source gain the goodwill of the community while making commercial and academic end
users more competitive and productive. The open source model will also help with
adoption, increasing the size of the overall market.
SD Erlang as an extension to the Erlang programming language will be released as part of
OTP that is an Open Source software. (D3.1, D3.2, D3.3).

Scalable Reliable OTP Release (D3.4) will be released as Open Source software as well.

- Contributing to Research

Dissemination of research and development throughout the course of the project is
being carried out through publication in technical and scientific journals and
presentations at academic and commercial conferences. Results of the project are used in
academic courses and are the result of PhD and Master’s thesis projects.
List of publications are available in D7.2 (Dissemination Plan).
During the development of SD Erlang continuous research activities are carried on, for
details see D7.2.

- Commercial Exploitation

Growing the Erlang community and the individual tool exploitation allows companies who
sell services and tools to not only increase their size of the market and market share when
selling training, consulting, support and systems development, but also provide routes into
new markets with new products.
Wombat (a tool for deployment and management of Erlang systems) will make easier to
deploy applications, which can be an interesting use case for the customers.

Erlang VM improvements (for details see D2.3) will speed up ETS table handling and the
newly introduced thread progress functionality allow implementing lock-free algorithm,
which will improve the performance of concurrent systems. These benefits will be useful for
the whole Erlang community (both for commercial and research activities)

Reliable Sim-Diasca Simulation (D6.1) as a use case can prove the benefits of using SD
Erlang and other achievements by the project and can generate customer interest as well.

ICT-287510 (RELEASE) 14 October 2013 6

- Improving In-house Technology and Tools

The results of RELEASE has allowed companies and academic institutions to improve their
own internal tools and frameworks, reducing the gap to developing and researching resilient
distributed systems which scale on multi-core architectures. This route has allowed the end
users to be drivers and early adopters of technological innovations.
Online SD Erlang Profiling and Refactoring Tools (D5.2), systematic testing and debugging
tools (D5.3) and the Interactive SD Erlang debugger tools will help Erlang developers
during their daily work.

Date Action Type of
activity

Target
groups

Goals during the
project’s lifetime

Goals after the
project’s
lifetime

Dec 2011 Creation of the Web
Site

Web Site of
the project

Public Show the progress of
the project to the
public. Updates to the
Web-site showing the
continuous progress of
the project.

Show the
deliverables of
the project

July 2012 Creation of
dissemination
strategy

Dissemination
Plan

Project
partners

Full dissemination of
the project & its
deliverables

Creation of the
conditions that
will allow the
exploitation later
of project’s
results.

August-
Sept 2013

Creation of an
exploitation strategy

Exploitation
plan

Project
partners

Coordinate the
partners in order to
achieve the goals of
the exploitation
strategy

Exploitation of
the project’s
results
commercially
after the project
has finished

Oct-Dec
2013

Creation of leaflets &
promotional material

Leaflets,
powerpoint
presentation,
article about
the project
brochures

Public Use of these materials
in presentations,
meetings&conferences
in order to make the
project result known

Creation of base
documentation
which will be
used later for the
exploitation of
the project’s
result

ICT-287510 (RELEASE) 14 October 2013 7

Dec 2013 Dissemination event
(mid-project
workshop)

Dissemination
Event in
London. UK

Target
group +
Public

 Creation a list of
contacts of
interested parties

Year
2012-
2013

Seminars/professional
articles

Participation
in seminars
and
conferences

Target
group

 Make the
projects’ results
known and
present the
deliverables to
potentially
interested
stakeholders

Oct 2013
– Aug.
2014

Case study to run SD
Erlang application in
Clouds

Application
development

Target
group +
Public

Compare the
performance of
distributed Erlang and
SD Erlang

Make the results
known

ICT-287510 (RELEASE) 14 October 2013 8

4 Market analysis

Introduction
Erlang is the technology of choice for the RELEASE project, but it is not the most
widespread programming language, so in this market analysis we will compare Erlang to
other programming languages and show where Erlang has an advantage and where it has
challenges.

Comparing technologies – in particular programming languages – is often a very subjective
matter and often done on without a clear indication of how to do the comparison. In most
cases it will be a proponent of a particular technology that chooses what aspect to compare.
In this case we will try to single out the most important aspects related to the charter of
RELEASE and be as objective about how Erlang stands on these properties compared to
other technologies. That said, the properties naturally have a very good fit with the strengths
of Erlang, so this comparison has that bias to deal with.

In addition to these properties there is also a set of fundamental problems with the modern
and near future machines with many cores that needs to be factored into the comparison.

The properties and problems are as follows:

Multicore space properties

• Concurrency — The property of having multiple computations executing simultaneously.
For our purpose, concurrency is a property of the programming language, describing what
tools are available to express simultaneous computations.

• Parallelism — The ability to reduce *cost* of a computation by spreading computation
over multiple physical machine cores. Here *cost* most often refers to the time it takes to
produce the result of the computation. Thus, parallelism is a property of the machine and
focuses of the productivity of the system and its ability to use multiple cores. It is
important to stress this is orthogonal to concurrency: it’s possible to run a concurrent
program on a single-processor machine by simply switching concurrent context from
time to time through multi-tasking and time sharing. This switch can happen either
cooperatively or pre-emptively depending on the runtime.

• Resilience — It’s a property, which shows how the system copes with failure. Most
notably, partial failure in the system, where one core dies whilst the other cores
continue to run on. Also, this addresses the problem where one part of the system
crashes due to software failure and whether that causes a total system abort or just a
partial system abort.
For a machine with 10⁵ cores, some of them will eventually fail. This means
resilience is a must-have

• Distribution — The ability for the system to communicate between physical
machines in a seamless manner, or a layer needs to be written in order to achieve
this.

ICT-287510 (RELEASE) 14 October 2013 9

Problems with 10⁵ cores massively parallel machines:

• Memory bandwidth – one cannot get data to the cores quickly enough. This means
that the memory needs to be split up into banks. In effect, large shared heaps pose a
difficulty here, where a message-passing model fits perfectly for a case study.

• Isolation - One program must not crash another program running in parallel. The
crashes can be due to software mistakes, or hardware faults. There are some lesser
variants of this for large programs: If they use libraries written by others, or the team
writing code is large and split over several continents. As software grows, the risk of
error increases.; and as more hardware is added, the risk of hardware failure
increases too. Isolation is a necessary requirement in such a setting.

• Embrace copying - If data is copied into a process, it means it now has a local cache
of the data. If data is immutable, this is a good thing. It means that one process
cannot destroy the data held by another process, however ‘badly’ the other processes
‘operate’ this data. Many languages prefer passing pointers due to "speed" or
"performance" but that solution is a risk with regards to resilience.

The traditional way of offering concurrency in a programming language is by using
threads. In this model, the execution of the program is split up into concurrently running
tasks. It is as if the program is being executed multiple times, the difference being that each
of these copies operated on shared memory.

Shared memory might have several problems:

- lost-update: For example if two processes try to increment the value of a shared
object: acc. If they both retrieve the value of the object, increment the value and store
it back into the shared object; as these operations are not atomic, it is possible that
their execution gets interleaved, leading to an incorrectly updated value of acc. Using
locks can solve this problem.

- deadlock: If two processes try to acquire the same two locks A and B. When both do
so, but in a different order, a deadlock occurs. Both wait on the other, to release the
lock, which will never happen.

In order to avoid the previously mentioned problems the actor model was introduced.

In the actor model, each object is an actor. This is an entity that has a mailbox and a
behaviour. Messages can be exchanged between actors, which will be buffered in the
mailbox. Upon receiving a message, the behaviour of the actor is executed, upon which the
actor can: send a number of messages to other actors, create a number of actors and assume
new behaviour for the next message to be received.

Of importance in this model is that all communications are performed asynchronously. This
implies that the sender does not wait for a message to be received upon sending it, instead it
immediately continues its execution. There are no guarantees about the order in which the
messages will be received by the recipient, but they will eventually be delivered. Note that

ICT-287510 (RELEASE) 14 October 2013 10

in Erlang message delivery is not guaranteed, but the order of messages between two
processes will be preserved.

A second important property of the actor model is that all communications happen by means
of messages: there is no shared state between actors. Each actor runs concurrently with
other actors: it can be seen as a small independently running process.

Language elements that support concurrency

• in Erlang, - processes, messages, sending/receiving messages, monitors.
• in Go goroutines, channels and the operators for sending messages.
• For Java mutexes, the synchronized keyword

Distributed systems

For large scalable systems, there is a requirement to handle a high number of cores as well
as provide distribution within several machines. The Erlang model is seamless, i.e. there is
no difference between a process on one machine or another machine. This is a problem for
concurrency models in other programming languages.

Multi-core scalable programming languages
(potential competitors for Erlang)
We summarize below the pros and cons of each language with regards to suitability for
multi-core, distributed scaling:

• Erlang - the language supports all the previously described properties. We have
expanded further in section The Erlang language

• Scala combines the object-oriented paradigm with the functional paradigm, has a
terse syntax compared to Java, is statically typed and is as fast or sometimes even
faster than Java. (For more information see the following benchmark) The drawback
for Scala is that within each OS thread, event based actors execute sequentially
without preemptive scheduling. This makes it possible for an event-based actor to
block its OS thread for a long period of time.
As this is a general purpose, multi-paradigm, object-oriented, functional language
with concurrent elements it is very complex and the learning curve is long.

According to the TIOBE index the popularity of the language is decreasing, from 30th
in 2009 to 42 th in 2013.

• Clojure is very good for concurrency, but missing distribution, which is one of the
critical requirements for the RELEASE project.
The language does not hit the first 50 on the TIOBE index, not in 2009 or in 2013.

• Haskell supports concurrency and distribution.
Cloud Haskell provides most of the required distributed tooling, however, the Cloud
Haskell platform is a little bit immature. Haskell has a very strong concurrent core. It

ICT-287510 (RELEASE) 14 October 2013 11

allows the use of Transactional Memory though the STM monad. It provides One-
element mailboxes through the MBox primitive. It has lightweight processes like
Erlang. It can also utilize additional cores. It has a concept of a "spark" which is an
extra light computation (it doesn't have a stack and shares stack with other sparks).
This allows for, finer, grained, parallel execution than Erlang since computations can
be broken up at a much finer granularity.

This is the purest functional language, which has a long learning curve but is a
worthy contender.

Checking the TIOBE index shows that it was more popular in 2009, 30th to 46th in
2013.

• Go is a good choice, but it lacks distribution and resilience. It is possible to ‘panic’ a
Go program if a library is not well written. It violates the your-program-can't-crash-
my-program theory. There is a panic/recover feature, but it only works on expected
faults, not unexpected faults. Also, the go memory model is built such that it doesn't
do copying; therefore the embrace-copying feature is missing.
The language just hit the first 50 on TIOBE index

• Ocaml works on a single core only. Currently there is no support for parallel
execution, though an experimental concurrency extension exists. JoCaml exists,
based upon the Join-calculus. The runtime would need major surgery to support
multiple cores. There is no distribution; it is one large shared heap.

• Node.js is a very popular joining of the V8 Javascript engine to a simple
epoll()/kqueue() loop written in C(++). It was thought to be very scalable, but there
are a few problems: Firstly, there is no parallelism. It can only utilize a single core at
a time. Secondly, the concurrency model is based upon continuation passing and
callbacks. In effect, large complex systems become reminiscent of GOTO-style
programming, and there is a considerable amount of literature that points to a
"callback hell" due to this concurrency model. Furthermore, the language sports a
very naive runtime, has a shared heap space and provides no protection other than
mutexes. It is not clear how to get this system to run on 10⁵ cores. There are no
distribution features, and we’re not sure about resilience.

• Python: Several implementations exist. The de-facto CPython implementation is
one-core-only and there is a GIL (Giant Interpreter Lock) that hampers parallel
execution. One shared heap means that the system has no resilience and no
distribution either. Using this language will mean a lot of work to achieve the goal. If
JYthon or IronPython are used, they bring no added benefit compared to using Scala
or C#.

• Ruby: Several implementations exist. This language has the same problems as with
Python. Backends are often written in “shared-nothing” style. The basis for this style
is that you run a large amount of processes in a UNIX-like system.
Intercommunication between the processes would be quite expensive, but in a
shared-nothing architecture there is no sharing at all. Each process acts
independently. When a Ruby process runs, it usually only accepts a single request,
and it blocks, without handling other requests in the meantime. Huge numbers of

ICT-287510 (RELEASE) 14 October 2013 12

processes are needed to utilize a multicore machine, which results in context switch
overhead, and wasted memory resource usage, since many of the processes could be
using the same resources.

To be able to compare the languages the following table summarize the 4 properties
according to the below definition:
C: concurrency — Are the primitives strong enough for our want?
P: Parallelism — Do we need to alter the implementations to utilize multiple cores?
R: Resilience — Can we isolate error correctly? Would it be possible to isolate hardware

failure?
D: Distribution — Is it built-in, or do we have to roll-our-own?

Language Properties Comment
Erlang CPRD
Scala CP due to the Akka framework,

ScalaRx
Clojure CPR
Haskell CP(R)D There are discussions around

Haskell resilience
Go CP
Ocaml C (R) Oacml does not have resilience

in the way we want
Node.js - Nothing at all we want
Python - Nothing at all we want
Ruby - Nothing at all we want

Popular languages which do not scale on multi core
- Java, C++: Are using mutexes and locks as programming model, which has

problems:
o It’s often leads to deadlock:

§ To maintain any semblance of order, concurrent Java programs use
threads that lock pieces of data when a part of the program (let's say
Method A) needs access. If another part of the program (Method B)
needs access to that same piece of data, Method B is locked out and
needs to wait for Method A to finish and unlock the data. The more
processors are thrown at a Java program, the more often these data
collisions happen, and will eventually hit a point where the whole JVM
is simply bogged down in the process of managing and manipulating
locks.

o Locks does not distribute over multiple machines easily
o Sharing data in the programming model required and it was ruled out as a

viable way since the preferable is to copy data around
o None of the usual High-performance-computing models are using locks, they

standardized on message passing (MPI).
o There is no built-in resilience.

ICT-287510 (RELEASE) 14 October 2013 13

The Erlang language
Erlang has been available as Open Source technology since 1998, and its popularity is
growing at an exponential rate. According to the TIOBE September 2013 Programming
Community Index, Erlang is among the 30 most popular programming languages, up ten
positions from 2009, when it was the 39th most popular language. The Redmonk index is
showing similar trends.
Erlang is nowadays represented at most mainstream software developer conferences, and
demand for Erlang programmers is on a rising trend. Two strong market and technology
trends speak in Erlang’s favour:

1. E-commerce, New Media, Messaging and Social Networking have matured to the
point where it is no longer enough to present a flashy web page to attract customers;
one has to address scalability, response time and fault tolerance in order to get
appreciable market share. To this end, leading sites and infrastructure providers like
Klarna, Adtech, WhatsApp, Rackspace, EngineYard, Github and Heroku rely on
Erlang for important components that allow their infrastructure to scale.

2. Hardware vendors have reached the end of the road on increasing clock speeds on
single-core CPUs, and are now focusing on multi-core architectures. This forces
programmers to embrace concurrency in order to evenly sustain their performance
(as the number of cores increases, each individual core tends to become less
powerful). Erlang is one of the few languages with strong multicore scalability.

3. The scalability problems of companies such as Google, Ebay, Yahoo, Facebook and
Amazon today affect not just a few, but all new companies entering the market.
Anyone who wants to aspire at becoming the next Facebook needs to consider
scalability issues from the start. Erlang is one of the very few programming
languages that have built in distribution semantics that allows systems to scale
horizontally by adding commodity hardware.

A background trend is that languages based on functional programming concepts are
enjoying increasing attention, as these concepts appear to hold up very well in the face of
multi-core scalability. Elixir is a new language built on top of the Erlang Virtual Machine
that is quickly gaining attraction. It provides a new means to program using the Erlang
model whilst retaining compatibility with all of the tools and libraries.

Results of the project
As a result of the RELASE project language extension (SD Erlang), improvements to the
Erlang VM, tools and case studies are created.

 SD Erlang 4.1.1
Scalable Distributed (SD) Erlang, is an extension of distributed Erlang functional
programming language, that aims to enable Erlang server applications to scale on
commodity hardware with at most 105 cores. The reason SD Erlang has been introduced
because it is not feasible for a node to maintain connections to tens of thousands of nodes,
when using the distributed Erlang scheme of transitive connections. SD Erlang reduces the
number of node connections and the number of nodes in a namespace, by introducing
s_groups, i.e. nodes in an s_group have transitive connections only with nodes from the

ICT-287510 (RELEASE) 14 October 2013 14

same s_groups, but non-transitive connections with other nodes. Each s_group has its own
name space, i.e. names registered in an s_group are replicated only to the nodes from the
same s_group.
SD Erlang was implemented by introducing new s_group.erl module in lib/kernel/src and by
modifying corresponding functions and tables in such modules as global.erl, kernel.erl, and
net_kernel.erl. Erlang nodes can join s_groups at launch and dynamically. Other s_group
functions include adding and removing nodes from s_groups and deleting s_groups. In SD
Erlang free nodes, i.e. the nodes that belong to no s_group, behave identically to distributed
Erlang nodes.
The initial experiments that compare performances of distributed Erlang and SD Erlang
using DEbench benchmarking tool show that SD Erlang provides a higher throughput. The
details of SD Erlang and its implementation can be found in deliverables and publications of
WP3. The source code can be found in https://github.com/natalia-
chechina/otp/tree/sd_erlang.
The SD Erlang name is used only as a convenient means of identifying the extensions we
propose: it is expected the extensions to become standard Erlang in the future.

 Percept2 + Visualization text for RELEASE 4.1.2
Percept2 (https://github.com/RefactoringTools/percept2) and it is associated visualization
tools (https://github.com/RefactoringTools/percept2_online) provide facilities for offline
and online monitoring of distributed and SD Erlang systems running on multicore
processors.

Percept2 is built on the foundation of Percept
(http://www.erlang.org/doc/man/percept.html), the principal existing Erlang concurrency-
profiling tool, which is distributed as a part of the Erlang/OTP main distribution. Percept2
extends Percept by providing the following facilities:

· Process migration between run queues: history and number
· Messages sent intra- and inter-core.
· Average size of messages sent/received.
· Structured presentation of process hierarchy.
· Dynamic callpath/count/time generation.
· Structured display of callpath/count/time information.
· Report of function activities during a time interval selected.
· Process communication graph.
· Parallel analysis of trace data.
· Support for sampling-based profiling.
· Selective function profiling of processes.
· User-command interface improved to allow the profiling of a particular aspect of

the execution.
·
Percept2 and the visualization tools are available as open source systems on github. This is
done in order to ensure the long-term sustainability of the tool during and beyond the life of
the RELEASE project through attracting community support and contributions for the

ICT-287510 (RELEASE) 14 October 2013 15

tooling. This ensures that Percept2 and the visualization tools will be available in the long
term.

The tools are written in Erlang. Percept2 is built using Erlang plus the DTrace / SystemTap
system available for unix (Mac OS X, linux) systems. The visualization and visual aspects
of Percept2 are browser-based, using HTML5 and JavaScript libraries, thus ensuring that
there is no long-term dependency on any platform-specific framework software.

These tools are usable for general distributed Erlang programs, but have also been
customized to work with SD Erlang. The DTrace-based probes only support systems
running on the unix platform, but this represents the majority of existing Erlang systems.
There are no substantial barriers to adoption beyond the linux dependency of DTrace-based
probing; note that Percept2 supports *all* platforms through its support of built-in Erlang
tracing.

From the inception of parallel programming, the availability of tools that ease the effective
deployment of programs on parallel platforms has been a crucial criterion for success. One
of the more effective mechanisms for such tools, is to present a visualization of
characteristics of the parallel execution of programs, whether post-hoc (offline) or in real
time (online). Visualizations continue to be supplied as a part of programming toolkits for
multicore development. A typical example is the Intel Trace Analyzer and Collector
[ITAC], which support the analysis, optimization and deployment of applications on Intel
processor-based clusters with MPI communication.

The Erlang Virtual Machine is equipped with a comprehensive, low-level tracing
infrastructure provided by the trace built-in functions. Built upon this are a number of
higher-level facilities, including the debugger (dbg) and the trace-tool builder (TTB), which
provides facilities for managing profiling, tracing across a set of distributed Erlang nodes.
As the name suggests, the tool is designed to be extensible to provide different types of
profiling, tuned to different applications and environments. Percept is also a part of this.

The BUBBA project (https://github.com/duomark/bubba) appears to have used a similar
browser-based approach to visualization, but the project had been inactive since 2012.

 Wombat 4.1.3
Wombat’s foundation is a set of tools and libraries which aims at providing help in the
development, deployment, monitoring and scalability of Erlang based systems. It makes
accessing, controlling and scaling large numbers of nodes easier, so that developers can
focus on getting their job done without worrying about patching, deployment or monitoring,
and without the need to reinvent the wheel and re-implementing generic functionality within
projects. It can be broken down into three independent parts that can be combined to interact
with each other or used individually. The three parts consist of:

ICT-287510 (RELEASE) 14 October 2013 16

• A development stack, or distro, which alongside Erlang/OTP, contains tools,
applications and libraries covering generic functionality needed by most Erlang
Systems. Developers using the standard applications from the distro will provide
hooks that facilitate monitoring and operations of the final product they are
developing.

• Wombat OAM handles monitoring and management of Erlang systems through a
web based GUI and/or by providing standard interfaces to other OAM tools and
services such as (Graphite, Cacti, or SaaS) offerings from (New Relic and
Boundary). Wombat will interface towards Erlang systems (and where present,
standard applications from the distro) without the system having to be aware of
Wombat’s existence.

• Wombat Orchestration deploys Erlang systems in heterogeneous public and private
cloud, low powered clusters and private servers, allowing the dynamic scaling and
shrinking of the system based on preconfigured triggers. Wombat orchestration can
interface towards tools such as (Chef, Puppet or ssh).

All tools that offer Wombat’s functionality currently are not easy to use with Erlang based
systems, making their integration, cumbersome. Wombat will work out of the box and can,
(without any changes), be integrated with systems that are already deployed and operational.
This increases the current market segment of green field projects, of which Erlang Solutions
helps out with half a dozen a year, to the tens of thousands of installations of Erlang based
systems.

Pivotal Labs estimates that there exist about 50,000 installations of RabbitMQ1, an Erlang
based open source AMQP interface. In addition, installations of Riak , CouchDB, Ejabberd,
MongooseIM and Disco, together account for the majority of Erlang deployments, catering
for a market worth millions. If one is to expand outside the Erlang world, the potential is
even larger.

The strategy is to first get the Wombat tool to work well in the market segment we know
well. The steps to follow this strategy are the following:

o Demo the tool for customers

o Provide access to the tool free of charge for already existing customers and
collect feedback

o Use the tool within the project for deploying the case study applications

Once that goal has been achieved, we can address other markets outside Erlang.

 Sim-Diasca 4.1.4
Sim-Diasca (http://www.sim-diasca.com) is a discrete-time generic simulation engine,
implemented in Erlang. It is designed to preserve key model-level evaluation properties
while targeting the simulation of very large-scale systems (millions of complex models). It
does so by aiming for maximum concurrency, with a mode of operation that is both parallel
and distributed.

1 This comes from Alexis Richardson, one of VMWare's directors of Technology, currently director at Pivotal.

ICT-287510 (RELEASE) 14 October 2013 17

Sim-Diasca (which stands for Simulation of Discrete Systems of All Scales) is developed
within EDF since 2007 and has been released as free software (LGPL licence) since 2010.
It has already been used for in-house purposes and also in a partnership project
(http://www.cleveronline.org/).
As a scalability-focused tool, various benefits for Sim-Diasca are expected to stem from the
RELEASE project, including:
 - More knowledge and know-how to make the best use of the language and of its associated
tools (to check, benchmark, refactor, tune, etc. our engine)
 - The use of the evolutions and extensions of the language (SD-Erlang, s-groups, etc.) to
target simulations of higher scales
 - The port of the Erlang VM to the Bluegene/Q supercomputer to reach effectively these
intended scales
All corresponding tools expected to be released as free software.
Sim-Diasca is written in Erlang. Through the project it will be made more compliant to the
OTP principles (notably transformed into a standard release).
Sim-Diasca is one of the very few discrete-time simulation engines that has been designed
for scalability.
The engine may be applied to the simulation of most complex systems, and is by nature
transverse to many application sectors (from biology to engineering).
We are not aware of any significant competitor in terms of pure, generic, domain-agnostic
simulation engines. Most are dedicated to specific themes (ex: to simulate telecom
networks, business processes, etc., like OMNeT++) - which induces strong challenges
whenever needing to couple domains, or are more integrated tool chains for modeling and
simulation - with generally severe limitations in terms of supported scale (ex: AnyLogic).
Being solely free software, the notion of market share hardly applies, however Sim-Diasca
is used inside and outside of EDF, in various domains, and, despite the low-volume
advertisement that was made, has already be released to more than 30 persons and
organizations.

 Benchmarking tools 4.1.5
DEbench is a benchmarking tool based on Basho Bench tool. DEbench is used to measure
distributed Erlang scalability and to compare performance and scalability of distributed
Erlang and SD Erlang. DEbench is available in github
https://github.com/amirghaffari/DEbench.

BenchErl is a publicly available scalability benchmark suite for applications written in
Erlang. In contrast to other benchmark suites, which are usually designed to report a
particular performance point, our benchmark suite aims to assess scalability, i.e., a set of
performance points that show how an application’s performance changes when additional
resources (e.g. CPU cores, schedulers, etc.) are added.

ICT-287510 (RELEASE) 14 October 2013 18

The features included in BenchErl allow the execution of applications in various execution
environments, the visualization of the results, and the extraction of useful conclusions.
Hence, it is a tool that might help the Erlang community make a first step to better
understand the parameters that affect the parallel execution of Erlang applications.

Key features of the tool:

• Unique: BenchErl is the only benchmark suite that targets the scalability of Erlang
applications

• Configurable: BenchErl allows the configuration of a large number of parameters
that might affect the execution of a benchmark. BenchErl handles the execution of
the benchmark with all possible combinations of these parameters.

• Automated: BenchErl handles the collection, the execution and the visual
presentation of the benchmark execution results.

• Extendable: It is straightforward to add new benchmarks and applications to
BenchErl.

5 Exploitation initiatives

5.1 Wombat

 Product development strategy 5.1.1
A lean approach to developing Wombat will be taken. In a first iteration, the Wombat
minimal viable product should be able to manage the topology of the system, including self-
discovery of nodes. It should handle metrics, alarms and events, and provide a configurable
architecture allowing other users to implement their own plug-ins. Wombat will consist of
one node running both the master and the OAM applications.

A web-based console will provide a visualization of node clusters, basic alarming, metrics
and logging. It will provide a plug-ins for:

• Folsom – the metrics application,
• Lager – the logging application,
• an interface into New Relic - a third party tool, for application monitoring.
• an interface into Graphite - the metrics visualization and database tool.

Once the minimal viable product providing the necessary infrastructure is launched,
additional features should be developed based on customer requirements and requests
resulting from the live trials.

 Actions to get Wombat used 5.1.2
• Based on interviews with prospective clients and market research, there is a need for

Wombat, as it generically solves problems programmers have to tackle in between
projects.

ICT-287510 (RELEASE) 14 October 2013 19

• Wombat will be made available to all customers purchasing business and enterprise
support packages of Erlang/OTP from Erlang Solutions. In addition to support of the
Erlang VM and OTP applications, Users will get access to Erlang Training, Erlang
Conference tickets and a number of hours of Consultative Support. Therefore, whilst
Wombat is under development, the plan is to get End Users to purchase the product and
influence it’s development, and the products will need to be packaged into services and
products that customers need. The commercial benefit for Erlang Solutions is understood
to be in the sale of additional Support and Training packages.

Wombat will have an open plug-in architecture, allowing developers to implement their
own tools. This will allow developers to implement new tools that they can either integrate
with wombat or RELEASE as open source. Open source tools can be run on any
framework, such as those provided by performance labs.

• In a second phase, Wombat SaaS will be launched. The software as a service offering
will have three tiers, of which the simplest one will be free of charge. This will allow
Users to test Wombat without having to buy or install it. Other tiers will provide
more tools and plug-ins, better visibility and store metrics and logs for longer period
of time.

5.2 Other areas

§ VM improvements
The OTP/Erlang VM improvements we have been working with will all be included in the
Open Source project Erlang/OTP. They are all aiming for improving the multicore
scalability and performance when the number of cores increases.

The improvements are necessary for keeping Erlang in a top position when it comes to
multicore utilization (combined with productivity and robustness).

All of this will make Erlang even more attractive and will grow the community around
Erlang. It will result in a broader usage of Erlang in commercial products and in research
projects.

§ SD Erlang & Refactoring for API
SD Erlang is available in github

• https://github.com/natalia-chechina/otp/tree/sd_erlang.

The language extension was also promoted on a number of conference and seminar talks
given by WP3 team and by posters.

§ Percept2
The tools are available on github

ICT-287510 (RELEASE) 14 October 2013 20

• https://github.com/RefactoringTools/percept2
• https://github.com/RefactoringTools/percept2_online

under an Open Source BSD-style license. They have also been reported in a series of
conference papers and presentations in both academic (Erlang Workshop, Visual Languages
and Computing) and industry-facing venues (Erlang Factory, Erlang User Conference).

§ Bencherl

The source code is freely available in github:

• https://github.com/softlab-ntua/bencherl

Demo of the tool was presented on several conferences.

§ Sim-Diasca
The official website (http://www.sim-diasca.com) allows to request access to the sources of
the tool.

Sim-Diasca has also been reported in a few presentations in both academic and industry-
facing venues, even if it is not a key priority for that tool.

6 SWOT Analysis

Strengths

§ The RELEASE consortium has developed language extension (SD Erlang) that will
enable scaling the reliability model to preserve Erlang’s sophisticated and effective
reliability mechanisms, of first class processes and supervision behaviours, in the
presence of locality and connectivity controls.

§ Complimentary product offerings are available, such as support, training material,
scheduled courses, online tutorials, webcasts, screencasts and videos.

§ Within the Erlang community, Erlang Solutions is the industry leader with all the
sales channels in place to commercialize and disseminate all the tools created by the
RELEASE project.

§ The Wombat - OAM and Orchestration tool can scale from small clusters to systems
with tens of thousands of nodes. No similar products for Erlang exist today.

§ There are no other tools and libraries available that enhance programmer productivity
in the areas of operations administration and maintenance among Erlang Users.

§ Orchestration and dynamic scalability, often comes as an afterthought when
designing a system. Using Wombat, provides systems developers these features out
of the box, allowing them to focus on the business logic which will automatically
scale.

ICT-287510 (RELEASE) 14 October 2013 21

§ Distribution and Scalability on multi-core architectures go hand in hand. Wombat
bridges the link between the deployment and monitoring of multi-core systems in
distributed architectures.

§ The DevOps team has had a defacto approach to doing things in Erlang for a long
time. The tools the consortium has developed will strengthen this approach, resulting
in lower operation costs and more stable systems.

§ Benchmarking and refactoring tools will improve the development phase of design
activities.

§ Sim-Diasca case study will demonstrate the benefits of using SD Erlang and Wombat
for deployment. Other customers can use the case study as an example.

§ Erlang VM improvements will speed up ETS table handling; newly introduced thread
progress functionality allow implementing lock-free algorithm, which will improve
the performance of concurrent systems.

Weaknesses

§ Only Erlang Solutions has a business case to sell tools and support of the tools
provided by the consortium. By providing an open plug-in architecture, tools can be
integrated and disseminated through other tools that support this architecture, not
limiting the dissemination to paying customers.

§ Releasing tools as open source will help make this research widely known and
increase the Erlang/OTP User base. As non-Consortium members are interested in
capitalizing on the results, this still helps increase the market for the companies who
are in the Consortium.

§ The market for Erlang development projects is small. RELEASE however helps
increase this market. By first getting Wombat right for Erlang based systems, it can
be expanded to deploy, manage and monitor systems written in other languages.

§ Tools are weakly integrated. The open plug-in architecture will hopefully address
this, allowing both community and commercial adoption of the tools.

Opportunities

§ Development on multi-core requires a mind shift. There is a growing need for the
tool set developed by the RELEASE partners to support this mind shift.

§ There is a growing opportunity to develop new lines of business around these tools,
including training, support and consulting.

§ The results of the RELEASE consortium can be used to enter the non-Erlang market,
specifically for managing and deploying systems in hybrid architectures.

§ Companies are interested in monitoring tools, since they need to monitor their
topologies.

§ Shifting mindset towards DevOps (not sure if it's opportunity or threat)

ICT-287510 (RELEASE) 14 October 2013 22

§ When these tools have been proven in the Erlang community, there is an opportunity
to start making them compatible with other programming languages and
development platforms, increasing the size of the market.

Threats

§ It is possible that existing open source tools used for deployment and monitoring of
clusters, will become as generic, as the tools developed by the consortium. Ensuring
the capability, to monetize existing work, will provide funds for future development,
ensuring that what has been developed remains ahead of the curve.

§ The market for Erlang tools and applications is relatively small. This market can be
increased in size by growing the User base and ensuring that the tools we develop
can be used across several programming languages.

§ Adoption of new tools is slow in the Erlang community. Very few tools are used,
even tools that ships with Erlang/OTP are not used much. Actively disseminating the
tools and ensuring that they are easy to use can reduce this threat.

§ Because Erlang usage is not widespread, there is a shortage of trained and
experienced developers. This can be counteracted, by increasing dissemination
activities, ensuring that there are adequate online resources, and by working with the
community, to grow the User base.

7 Conclusion	
This deliverable presents the exploitation plan of the RELEASE project.

It analyzed the RELEASE project business aspects, including the markets to be addressed
through the RELEASE solutions. Furthermore, it focused on the potential for the
competitive advantages, Strengths, Weakness, Opportunities and Threats.

Exploitation strategy and steps as well as partner collaborations are identified, and will be
further followed up within and beyond the projects life time.

8 Change	 Log	
1. First version.

• Sent for internal review 27.09.2013

• Updated and sent for re-review 10.10.2013

• Updated and submitted 14.10.2013

