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Executive Summary

This deliverable investigates the feasibility of introducing SD Erlang-like constructs for reliable
scalability into other popular actor languages, libraries, and frameworks taking Cloud Haskell,
Scala, and Akka as specific examples. All three are gaining popularity, and are inspired by the
Erlang distributed actor model. The results for Cloud Haskell (Section 2) show that it exhibits
scalability limitations very similar to distributed Erlang largely to the close similarity to Erlang.
We conjecture that providing SD Erlang features will benefit Cloud Haskell the same way they
benefit distributed Erlang, and will be an almost direct mapping from SD Erlang. Scala and Akka
borrow from Erlang ideas of process interaction within the nodes but do not follow distributed Erlang
inter-node interaction and full connectivity (Section 3). Therefore, application of SD Erlang ideas
is not as direct as in Cloud Haskell. However, the scalability issues the SD Erlang tackles are not
unique to distributed Erlang, and are applicable to other languages. That is introducing techniques
to avoid maintaining a large number of connections as the number of nodes grows (e.g. s groups
in SD Erlang), and providing mechanisms to enable programmability and portability of large scale
applications (e.g. semi-explicit placement in SD Erlang).

1 Introduction

The objectives of Task 6.7 are to provide a “report investigating the feasibility and limitations
of adding SD Erlang scalability / reliability constructs, and design patterns to a popular Actor
framework for a dominant language”. The lead participant is the University of Glasgow.

The Erlang distributed actor programming model is widely acknowledged as very effective,
and it has influenced and inspired a number of languages and frameworks, including Scala [16],
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Akka [27], Cloud Haskell [13], and Go [15]. Some of the most popular applications implemented in
Erlang are as follows: mobile messaging application WhatsApp [19], the backend of the Facebook
Messenger, the distributed fault-tolerant database Riak [3], and the open source message broker
software RabbitMQ [22].

In the RELEASE project we have designed and implemented Scalable Distributed Erlang (SD
Erlang) [6, 5, 4, 23, 24] – a modest conservative extension of distributed Erlang whose scalable
computation model consists of two aspects: s groups and semi-explicit placement. The reasons we
have introduced s groups are to reduce the number of connections a node maintains, and reduce the
size of namespaces. A namespace is a set of names replicated on a group of nodes and treated as
global in that group. The semi-explicit and architecture aware process placement mechanism was
introduced to enable performance portability, a crucial mechanism in the presence of fast-evolving
architectures.

In this deliverable we discuss possibilities and limitations of implementing SD Erlang ideas
in three popular Actor languages and frameworks: Cloud Haskell (Section 2), Scala, and Akka
(Section 3).

Partner Contributions to D6.7. The Glasgow team coordinated the deliverable and inves-
tigated opportunities to apply SD Erlang scalability principles to Scala and Akka programming
languages. The ICCS team analysed Orbit performance in Cloud Haskell and distributed Erlang,
and outlined features of SD Erlang that can benefit scalability of Cloud Haskell. The University
of Kent and ESL teams contributed to identifying applications written in Erlang, and approaches
used in other languages like Scala/Akka to scale distributed applications.

2 Scaling Cloud Haskell

Cloud Haskell [7] is a library that implements distributed concurrency in the Haskell functional
programming language [17]. The model of reliable distributed computation is inspired by Erlang
and provides a message passing communication model based on lightweight processes. The purpose
is to make it easier to write programs for clusters of machines. The Cloud Haskell platform consists
of a generic network transport API, libraries for sending static closures to remote nodes, a rich
API for distributed programming, and a set of libraries modelled after Erlang/OTP. It currently
provides two generic network transport back-ends, for TCP and in-memory messaging, as well as
several other back-ends including a transport for Windows Azure.

2.1 A Closer Look at Cloud Haskell’s implementation

Lightweight processes in Cloud Haskell are implemented as computations in the Process monad
(which uses GHC’s lightweight threads, in the most common Haskell implementation). Roughly,
Cloud Haskell applications use the following modules:

• Control.Distributed.Process for setting up nodes, processes, etc. Applications em-
ploy a specific Cloud Haskell backend to initialize the transport layer by setting up the ap-
propriate topology.

This module provides the machinery for starting nodes, spawning processes, sending and
receiving messages, monitoring and linking processes and nodes, as well as the implementation
of a (missing in Erlang) typed channel mechanism. Processes are forkIO threads. The
Process monad is an instance of MonadIO, which additionally keeps track of the state
associated with a process, primarily its message queue. Data that is exchanged in messages
between processes must implement the type class Serializable.
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• Network.Transport.*, providing a network abstraction layer which is supplemented with
various implementations, among which Network.Transport.TCP.

In Cloud Haskell networks, nodes are modelled by EndPoints (heavyweight stateful objects),
identified by EndPointAddresses (serializable, so they can be send and received as parts of
messages). Communication between nodes is modelled by Connections, which are designed
to be unidirectional and lightweight. Incoming messages for all connections to an EndPoint
are collected via a shared receive queue.

One of the dedicated processes that Cloud Haskell maintains in each node of an application
is the Discovery process [12, §4.2.4]. This process is used for inter-node communication: before
an application can communicate with a remote node, it must first know that it exists. Function
getPeers returns a structure containing information about all known nodes; this information is
obtained by combining:

• Static peer discovery: Examines the nodes currently running on a fixed list of hosts (provided
statically when the application starts). It accomplishes this by by sending a message to the
node registration server of each host which then returns the nodes.

• Dynamic peer discovery: Finds nodes running on hosts that are not mentioned in the applica-
tions configuration. It accomplishes this by sending a UDP broadcast message to all hosts on
the local network. Any Cloud Haskell nodes running on those hosts will respond by sending
a message to the originating process. (This can be disabled for security reasons.)

The primary mechanisms in Cloud Haskell for message passing and name registering in a dis-
tributed application are the following. They are provided by the Cloud Haskell module Control.
Distributed.Process [9] and, in the case of global registration, by the module Control.
Distributed.Process.Global [10]. Both are heavily inspired by similar mechanisms imple-
mented in Erlang/OTP and, in particular, the global module.

• Registration of named processes, implemented in Internal.Primitives:

– register :: String -> ProcessId -> Process ()

Registers a process with the local registry (asynchronous).

– registerRemoteAsync :: NodeId -> String -> ProcessId -> Process ()

Registers a process with a remote registry (asynchronous). This requires the identifier of
the remote node.

• Sending messages to named processes, implemented in Internal.Primitives:

– nsend :: Serializable a => String -> a -> Process ()

Sends a message to a named process in the local registry (asynchronous).

– nsendRemote :: Serializable a => NodeId -> String -> a -> Process ()

Sends a message to a named process in a remote registry (asynchronous).

Both these functions wrap calls to the following low-level function, which is implemented in
Internal.Messaging:

– sendCtrlMsg :: Maybe NodeId -- Nothing for the local node
-> ProcessSignal -- Message to send
-> Process ()

Sends a control message to a process, local or remote.
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• Global name registration, implemented in Global.Server. Lookups are always local and
therefore fast (each node maintains an up-to-date list of all registered names). On the other
hand, registration requires acquiring a cluster lock and broadcasting; therefore, it should not
be done too often.

– globalRegister :: TagPool -> String -> ProcessId
-> ResolutionMethod -> Process Bool

The global equivalent of register, which provides a name registry for the entire cluster
of nodes. Registered names are synchronously shared with all nodes in the cluster, and
given to new nodes as they enter the cluster. If the given name is already registered,
False is returned. The ResolutionMethod parameter determines how conflicts are
handled when two clusters merge, if they have different values for the same name.

– globalWhereis :: TagPool -> String -> Process (Maybe ProcessId)

Retrieves the process identifier of a registered global name.

• Extended process registry implemented in Platform.Service.Registry [11]. This mod-
ule provides an extended process registry, offering slightly altered semantics to the built-in
register and unregister primitives. Using this service, it is possible to monitor a name registry
and be informed whenever changes take place. This registry is a single process, parametrised
by the types of key and property value it can manage. It is possible to start multiple registries
and inter-connect them with one another, via registration. Such a mechanism is not provided
in the basic libraries of Erlang/OTP.

In the rest of this section we compare the scalability behaviour of a distributed application,
written in Erlang, to the behaviour of the same application written in Cloud Haskell. Experimenting
with a distributed application in Cloud Haskell was crucial for understanding the Cloud Haskell
platform and studying its implementation. Furthermore, by comparing the behaviours of the two
versions of the same application, we intended to verify that the two platforms (distributed Erlang
and Cloud Haskell) exhibit similar scalability properties when it comes to distributed applications
of several nodes. This, combined with the apparent similarity in the implementation of the two
platforms, would provide some confidence that a solution that works well in the case of distributed
Erlang could also work well in the case of Cloud Haskell.

2.2 Orbit in Distributed Erlang and Cloud Haskell

To compare Cloud Haskell with distributed Erlang in practice, we reimplemented the distributed
Erlang Orbit benchmark from [23] in Cloud Haskell.1 Orbit is one of the benchmarks that we have
repeatedly used for the needs of this project. It is a distributed implementation of Orbit, which in
turn is a symbolic computing kernel and a generalization of a transitive closure computation. Orbit
is described in detail in a previous deliverable (D3.4, §3.1) and elsewhere.2

The implementation in Cloud Haskell was based on the corresponding implementation in Er-
lang,3 and we tried to make this translation as direct as possible. Table 1 shows the lines of code per
source file of each implementation. Notice that the Haskell sources are approximately 50% longer;
this is partly explained by the fact that we added type signatures for all top-level functions (as is
customary in Haskell and considered good practice), whereas on the other hand the Erlang sources
do not contain -spec annotations. Notice also that, in the translation, we opted to merge two
source files (master.erl and worker.erl), as they contained mutual dependencies that would
be difficult to maintain in Haskell.

1Available from https://github.com/release-project/cloud-orbit.
2More detailed documentation is available from https://github.com/release-project/benchmarks, un-

der the directory Orbit/.
3Available from the project’s main repository https://github.com/release-project/RELEASE, under the

directory Research/Benchmarks/orbit-int/.

https://github.com/release-project/cloud-orbit
https://github.com/release-project/benchmarks
https://github.com/release-project/RELEASE
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Table 1: Implementation of Orbit in distributed Erlang (left) and in Cloud Haskell (right).

Source file Lines

bench.erl 142
credit.erl 64
master.erl 215
sequential.erl 108
table.erl 110
worker.erl 268

Total 907

Source file Lines

Bench.hs 174
Credit.hs 78
MasterWorker.hs 524
Sequential.hs 107
Table.hs 140
Tests.hs 196
Utils.hs 206

Total 1,427

Two things that deserve special mention concerning the Haskell implementation, are the follow-
ing. First, we decided to use Haskell’s purely functional (and lazy) arrays (Data.Array) instead of
impure alternatives, such as mutable arrays in the IO monad (Data.Array.IO) or the ST monad
(Data.Array.ST), which may give better performance. The reason behind this option is that
we wanted to be as close as possible to the Erlang implementation, which uses Erlang’s functional
arrays (implemented, however, in a completely different way). Second, we had to be careful with
Haskell’s lazy evaluation. The first version of our Haskell implementation had a very large memory
footprint, because the memory occupied by arrays could not be freed (array elements were com-
puted lazily and “earlier” arrays could not be freed, as they were necessary to compute elements of
“newer” arrays that had not been needed yet). This was fixed by adding a couple of seq operators,
forcing the strict evaluation of array elements.

The experiment consisted of running the two implementations of Orbit with two different sizes
of input data, coded “120k” and “300k” in what follows (generator gg1245 was used, parametrised
by this size of the space). We used a set of configurations with an increasing number of distributed
nodes. The configuration that is used as the basis for the comparison (i.e., against which speedup is
calculated) consists of a single node where all calculation takes place. The remaining configurations
used one master node and several worker nodes; calculation is performed in the worker nodes,
whereas the master serves as the coordinator. When counting the nodes of each configuration, we
only count the nodes where calculation takes place; we take n = 1 for the base configuration and
n > 1 for a configuration with n slave nodes and one master node.

Table 2 shows the results obtained from our experiment. As it was not our intention to measure
the effects of network communication in this experiment, all nodes were started on the same physical
machine. We used a server with four AMD Opteron 6276 (2.3 GHz, 16 cores, 16M L2/16M L3
Cache), giving a total of 64 physical cores, and 128GB of RAM, running Linux 3.10.5-amd64.
Execution time is measured in seconds and the speedup is relative to the sequential version of Orbit
(all calculation performed in the master node). For the version of Orbit implemented in distributed
Erlang, we used the Bencherl infrastructure [1],4 that has been developed for the needs of this
project (detailed documentation can be found in deliverable D2.1, §5). For the version implemented
in Cloud Haskell, we used custom scripts that are included in the benchmark’s source code. Figures 1
through 4 present diagrams of execution time and speedup for both implementation languages and
both input sizes.

The first thing to notice from the obtained results is that the Cloud Haskell implementation
is significantly slower than its Erlang counterpart. Execution times for Haskell are on the average
an order of magniture higher than the corresponding ones in Erlang; they range from 4-5 times
higher (for the small input size and 16-18 nodes) to 18-20 times higher (for the large input size and
the sequential version, or the one using two nodes). We attribute this to the bad performance of
Haskell’s purely functional arrays, in combination with the language’s laziness. The use of functional

4Available from http://release.softlab.ntua.gr/bencherl/ and also on GitHub: https://github.
com:softlab-ntua/bencherl.

http://release.softlab.ntua.gr/bencherl/
https://github.com:softlab-ntua/bencherl
https://github.com:softlab-ntua/bencherl
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Figure 1: Orbit in Erlang, size = 120K, execution time and speedup.
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Figure 2: Orbit in Cloud Haskell, size = 120K, execution time and speedup.
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Figure 3: Orbit in Erlang, size = 300K, execution time and speedup.
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Figure 4: Orbit in Cloud Haskell, size = 300K, execution time and speedup.
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Table 2: Orbit in Erlang and Cloud Haskell, execution time (in seconds) and speedup (relative to
the sequential version running on one node).

size = 120k size = 300k

Erlang Cloud Haskell Erlang Cloud Haskell

nodes time speedup time speedup time speedup time speedup

1 43.56 1.00 320.59 1.00 110.16 1.00 1,973.11 1.00
2 23.68 1.84 239.74 1.34 60.61 1.82 1,215.62 1.62
4 12.63 3.45 89.84 3.57 32.91 3.35 380.68 5.18
6 8.68 5.02 45.04 7.12 23.99 4.59 260.36 7.58
8 6.79 6.41 38.55 8.32 17.28 6.37 161.09 12.25

10 6.11 7.13 32.61 9.83 14.13 7.80 117.47 16.80
12 4.71 9.26 27.58 11.63 12.47 8.83 128.57 15.35
14 4.44 9.81 20.20 15.87 10.90 10.10 100.11 19.71
16 4.31 10.11 19.51 16.43 9.83 11.20 85.01 23.21
18 3.66 11.89 23.79 13.47 8.91 12.37 85.66 23.03
20 3.59 12.14 25.62 12.51 8.01 13.75 71.37 27.65
22 2.99 14.56 22.01 14.57 7.53 14.63 59.71 33.04
24 3.15 13.84 18.19 17.63 7.10 15.51 77.34 25.51
26 2.99 14.59 20.54 15.61 6.61 16.66 69.46 28.41
28 2.61 16.71 18.17 17.64 6.42 17.16 64.76 30.47
30 2.41 18.11 15.87 20.20 6.42 17.15 59.71 33.05
32 2.73 15.95 18.48 17.35 5.98 18.43 70.15 28.13
34 2.41 18.09 16.94 18.93 5.73 19.21 66.24 29.79
36 2.19 19.93 15.40 20.82 5.65 19.49 65.66 30.05
38 2.51 17.38 15.01 21.35 5.60 19.66 67.13 29.39
40 2.28 19.11 15.74 20.37 5.29 20.83 63.61 31.02
42 2.36 18.46 15.42 20.80 5.36 20.57 60.38 32.68
44 2.00 21.75 17.18 18.67 5.37 20.50 60.33 32.71
46 2.09 20.85 15.58 20.57 4.95 22.25 63.04 31.30
48 1.99 21.89 17.51 18.31 5.08 21.69 60.12 32.82
50 1.94 22.44 16.26 19.72 5.23 21.08 64.50 30.59
52 2.21 19.73 15.52 20.66 4.89 22.51 63.82 30.92
54 2.30 18.96 17.03 18.82 5.04 21.85 60.41 32.66
56 2.08 20.90 15.43 20.78 4.68 23.55 66.16 29.82
58 2.09 20.80 16.84 19.04 4.64 23.74 62.32 31.66
60 1.73 25.11 16.26 19.72 4.75 23.20 68.09 28.98
62 1.93 22.52 15.75 20.35 4.52 24.39 60.03 32.87

arrays in Haskell places a particularly heavy burden on the garbage collector.

The second thing to notice is that the Cloud Haskell implementation exhibits super-linear
speedup, e.g., 7.12 with 6 nodes and 15.87 with 14 nodes for the small input size, and 12.25 for 8
nodes, 16.80 for 10 nodes, and 33.04 for 22 nodes, for the large input size. We attribute this to
the fact that a large percentage of execution time (56% and 57% in the small and large input sizes,
respectively, for execution on a single node, or 180 and 1,141 seconds, respectively) is spent during
garbage collections. For the two input sizes that we used, the total amount of data allocated in the
heap (not at the same time, obviously) is 143GB and 892GB, respectively, out of which the garbage
collector had to copy 220MB and 636MB, respectively. When calculations are distributed over a
larger number of nodes, memory allocation reduces and the garbage collector takes a significantly
smaller amount of execution time. Moreover, when fewer data are allocated and used, the benefits
of the cache memory are higher.

In terms of scalability, the two implementations show roughly the same behaviour, if we disregard
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the problems with memory management and garbage collection that are far more apparent in the
case of Cloud Haskell. The Erlang implementation shows a constantly increasing speedup, which
approaches 20-25 around 64 nodes and shows a tendency to stabilize at this range of values. On the
other hand, the Cloud Haskell implementation shows a speedup that quickly approaches 20 and 30
(for the two input sizes, respectively) around 32 nodes, but has a tendency to remain constant or
to slightly decrease for larger numbers of nodes.

2.3 Summary

The above experiments suggest that Cloud Haskell applications exhibit similar scalability limita-
tions as distributed Erlang ones. This is also supported by some recent discussions concerning the
limitations of Cloud Haskell when it comes to applications spanning large distributed networks [2].
Like in distributed Erlang it is problematic to maintain all to all connections in a large network,
as it places considerable strain on system resources, especially in the case of connection-oriented
transport layer protocols, such as TCP.

Solutions proposed by the Cloud Haskell community follow two main approaches:

• Handle connections more efficiently by having the transport layer on each node manage the
connections on each of its endpoints. Heuristics could be applied, including, e.g., closing
connections to remote endpoints that haven’t recently been used, closing old connections in
favour of new ones, etc. It should be mentioned here that connection management in Cloud
Haskell is not as automatic as in Erlang/OTP: failing connections must be re-established
explicitly by the application’s code.

• Create independent federated (fully connected) clusters of nodes. Such clusters could then be
connected to each other by a small group of members, which would act as intermediaries.

However, for the Cloud Haskell development team, these problems and their solutions are of a quite
low priority (“way off the radar, now” [2], in December 2012). Of also low priority is massive scala-
bility support, in comparison to the implementation of better connection management (considered
of medium priority).

We believe that using our experience in scaling distributed Erlang, and introducing s groups and
semi-explicit placement could significantly improve scalability of Cloud Haskell applications while
allowing programmers using familiar coding techniques.

3 Scaling Scala & Akka

3.1 Scala

Scala is a statically typed programming language that combines features of both object-oriented
and functional programming languages [20]. It is a Java-like language implemented as a library
that compiles to Java Virtual Machine (JVM) and runs at comparable speed [21]. Scala provides
sophisticated static type system [18]. This was a design decision to enable painless access of Java
libraries from Scala programs and vise versa. Two of the most famous software products that
use Scala are online social networking service Twitter [14] and business-oriented social networking
service LinkedIn [25]. Twitter wrote most of its backend in Scala. The choice of the language
was defined by the following factors: support of long living processes, encapsulation (rather than
performance and scalability when comparing with Ruby), and a large number of developers who
can code Java. LinkedIn uses Scala to implement its social graph service.
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3.2 Akka

Akka is an event-driven middleware framework to build reliable distributed applications [27]. Akka
is implemented in Scala. Fault tolerance in Akka is implemented using similar to Erlang ‘let it
crash’ philosophy and supervisor hierarchies [26]. To support reliability Akka uses dynamic types.
An actor can only have one supervisor which is the parent supervisor but similarly to Erlang actors
can monitor each other. Due to the possibility of creating (spawning) an actor on a different Java
VM, two mechanisms are available to access an actor: logical and physical. A logical path follows
parental supervision links toward the root, whereas, a physical actor path starts at the root of the
system at which the actual actor object resides. Like Erlang Akka does not support guaranteed
delivery of messages.

3.3 Scaling

From available documentation on scalable applications implemented in Scala and Akka it appears
that those applications are data intensive and the scalability is achieved by using Hadoop-like
approaches. That is nodes have master/worker relationship, and the system structure consist of
two layers: Hadoop Distributed File System (HDFS) and Map Reduce [8]. The focus of HDFS is to
store data in a large system and then easily access this data, whereas the focus of Map Reduce is
to break a large job into small tasks, distribute the tasks between worker nodes, and execute them
in parallel.

Ideas from SD Erlang. Unlike Erlang VMs in distributed Erlang, JVMs in Scala and Akka
applications are not typically transitively interconnected. So, there is no need to constrain transitive
connectivity in these languages. However, it is common for these applications to scale horizontally.
In this case a master node becomes a single point of failure because it is connected to all worker
nodes. To decrease the load on the master node and increase the number of worker nodes we propose
to arrange worker nodes into groups, for example, according to a tree structure. That is the master
node distributes tasks to submasters nodes, and then submaster nodes distribute the tasks to worker
nodes. This hierarchical structure will reduce the number of connections not only in Hadoop-like
applications but also in applications where worker nodes communicate with each other. Depending
on the application other structures like chain and partial mesh can be also incorporated (Figure 5).
To improve efficiency of decision making policies, nodes that belong to multiple groups can serve as
gateway nodes that propagate state information about nodes from one group to another.

In addition, we believe that semi-explicit placement including node attributes and distance
metrics from will significantly improve and simplify portability of applications written in Akka.
That is instead of defining a particular node to where a process should be spawned, a programmer
will only identify properties of the target node, such as available hardware, or load, or a distance
from the parental node, and the process will be spawned to one of the nodes that satisfies given
restrictions. A detailed discussion on introducing semi-explicit placement in SD Erlang is presented
in deliverable D3.5: SD Erlang Performance Portability Principles [24].

4 Implications and Future Work

In this deliverable we analyse possibilities of implementing SD Erlang features in other actor lan-
guages to increase scalability of distributed applications. For that we have implemented Orbit
benchmark in distributed Erlang and Cloud Haskell and compared the performance (Section 2).
The results show that Cloud Haskell exhibits very similar scalability limitations as distributed Er-
lang. From this and from the fact that Cloud Haskell was inspired by distributed Erlang and
has similar features, we conclude that introducing s groups and semi-explicit placement from SD
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(a) Tree

(b) Chain

(c) Partial Mesh

Figure 5: Strategies for Grouping Nodes
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Erlang will significantly improve scalable reliability and portability of Cloud Haskell applications
while retaining familiar programming idioms. We have also analysed scaling in Scala and Akka,
and identified the use for SD Erlang-like node grouping and semi-explicit placement.

Change Log

Version Date Comments

0.1 11/03/2015 First Version Submitted to Internal Reviewers

0.2 21/03/2015 Revised version based on comments from K. Sagonas submitted to the
Commission Services
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