

ICT-287510

RELEASE

A High-Level Paradigm for Reliable Large-Scale Server Software

A Specific Targeted Research Project (STReP)

D5.4 (WP 5): Interactive SD Erlang Debugging

Due date of deliverable: 31 January 2015

Actual submission date: 28 February 2015

Start date of project: 1st October 2011 Duration: 36 Months

Lead Contractor: University of Glasgow Revision: 0.1

Purpose: This deliverable provides functionality to support debugging and monitoring systems written in SD

Erlang, complementing the tools already provided in Erlang/OTP and in earlier RELEASE deliverables.

Results: The main results of this deliverable are as follows.

 We have developed a new tool, SD-Mon, designed specifically to monitor SD-Erlang systems.

(Tasks 5.6, 5.7)

 We have made a thorough revision of the Devo tool, so that it now provides a more scalable

visualisation of SD-Erlang systems. (Task 5.7)

 We have provided patches for the Erlang/OTP distribution to deliver greater tracing scalability.

(WP5).

Conclusion: We have augmented Erlang with tools – Percept2, Devo and SD-Mon – designed to support the

development, monitoring and debugging the ‘Scalable Distributed’ aspects of SD Erlang systems.

Project funded under the European Community Framework 7 Programme (2011-14)

Dissemination level

PU Public *

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential only for members of the consortium (including the Commission Services)

ICT-287510 (RELEASE) 27 February 2015 2

Contents

1 Executive Summary ... 3
2 Introduction ... 3

Partner Contributions. .. 3

3 The tooling landscape .. 4
3.1 Erlang built-in tracing .. 4

3.2 Erlang tracing tools .. 4

3.3 Erlang profiling tools ... 4

3.4 Percept2 ... 5

3.5 Observer .. 5

3.6 Debugging infrastructure ... 5

3.7 Wombat ... 5

4 SD-Mon ... 7
4.1 Introduction ... 7

4.2 Overall Architecture .. 7

4.2.1 Master .. 7

4.2.2 Agents .. 9

4.2.3 Robustness ... 10

4.2.4 Configuration and Trace .. 11

4.2.5 Post-mortem analysis ... 12

4.2.6 Run-time visualization ... 14

4.3 How to run SD-Mon .. 15

4.3.1 Example 1: SD-ORBIT on single-host .. 16

4.3.2 Example 2: SD-ORBIT on multi-host ... 17

5 Devo .. 21
5.1 Visualization Changes ... 21

5.2 Back-end refactoring ... 22

5.3 Future work to Devo .. 22

6 OTP Patch to augment tracing ... 23

7 Conclusion ... 24

Change Log ... 24

References ... 24

Appendix ... 25

ICT-287510 (RELEASE) 27 February 2015 3

Interactive SD Erlang Debugging

Maurizio Di Stefano, Simon Thompson and Stephen Adams, University of Kent

1 Executive Summary
The standard Erlang/OTP distribution comes “out of the box” with a range of tools for tracing, profiling and

debugging Erlang systems. These systems are loosely federated, and usable together from the Unix

command line and Erlang shell. Indeed many are based on the Erlang built-in tracing system (and more

recently on the OS-level tracing tools DTrace and SystemTap).

In order for the deliverable to add value to this set of tools, the RELEASE project has chosen not to replicate

this functionality, but instead to develop tooling that complements what already exists and is already used. In

particular, we have added functionality in three ways.

 A new tool, SD-Mon, a tool designed specifically to monitor SD-Erlang systems; this purpose is

accomplished by means a “shadow” network of agents, mapped on the running system. The shadow

network follows system changes so that agents are started and stopped at runtime according to the

evolving structure of the system. SD-Mon can be used to understand the correct partition of nodes in

groups. At an initial stage, just by looking at the inter-node messages flow, it can drive the initial

partition itself. After that it can be used to trim the network architecture and to monitor the system,

revealing anomalies like intergroup messages bypassing the "bridge" nodes. (Tasks 5.6, 5.7)

 A thorough revision of the Devo tool for online monitoring of SD-Erlang systems, so that it now

provides a more scalable visualisation of SD-Erlang systems, as well as a substantial refactoring of

the overall architecture of the tool, making it more adaptable of use in conjunction with other tools,

especially SD-Mon. (Task 5.7)

 Patches for the Erlang/OTP distribution to deliver greater tracing scalability. (WP5).

In this deliverable we outline the tooling context for the deliverable before describing SD-Mon, the changes

to Devo and finally the Erlang/OTP patches.

2 Introduction
Deliverable 5.4 concerns two tasks from Work Package 5.

Task 5.6 Debugging tool

Task 5.1 will have delivered the infrastructure to making post-mortem observations on systems. This task will

be to integrate these results as a post mortem debugging tool into existing Erlang debugging infrastructure.

Task 5.7 Interactive debugging tool

Integration of information gathered in D5.2 into the Erlang debugging infrastructure will provide a tool for

the interactive debugging of systems.

Partner Contributions.

The principal effort for this deliverable is from the University of Kent. Staff from Erlang Solutions Ltd gave

feedback on the SD-Mon implementation and on the presentation of the results in this deliverable.

ICT-287510 (RELEASE) 27 February 2015 4

3 The tooling landscape
Deliverable D5.1 gives an extensive overview of the tools available for tracing, profiling and debugging

Erlang systems (as of mid 2012). We summarise that and bring it up to date in this section of the deliverable,

thus providing the context in which the work reported here has been done.

3.1 Erlang built-in tracing

The Erlang runtime system has built-in support for tracing many types of events, and this infrastructure

forms the basis of a number of tools which build on or specialise the services offered by the Erlang virtual

machine, through a number of built-in functions (or BIFs).

With the built-in tracing, an Erlang program can be traced while being executed, and no special compilation

or instrumentation of the program is needed. Events that can be traced include: global and local function

calls, process-related activities, message passing, garbage collection and memory usage.

However powerful it is, Erlang built-in tracing has some limitations. First, tracing adds a considerable

overhead; this situation can be mitigated to some extend on linux/unix systems by means of OS-level tracing

facilities such as SystemTap / DTrace, and such a back end has been provided for the Percept2 tool delivered

in D5.1/5.2. Second, because a traced process can only have one tracer process at any one time, it is

impossible to have several tools requiring trace information run concurrently on a node; this remains a

problem. Two other limitations have been tackled by RELEASE.

 It is possible to use match specification to have fine-grained control over the particular function call

or return trace events are generated. This is a much more efficient mechanism that generating a more

coarse-grained set of trace events, only to have them filtered post hoc. In this project we have

extended this filtering process - see Section 6 for more details.

 Out of the box there is no support for remote or distributed tracing, that is all settings have to be

executed on the node and the trace process has to be node local; the SD-Mon tool reported in this

deliverable (Section 4) allows tracing to be made across an SD Erlang system, automatically.

3.2 Erlang tracing tools

The Erlang built-in functions for tracing are powerful, but they are also very low-level and are not very user-

friendly. In practice, a sequence of function calls are needed to set up an interesting trace. Apart from that,

there are no ready-to use BIFs from Erlang for the display and analysis of trace results. Unsurprisingly, a

collection of tracing/profiling tools have been built on top of Erlang's built-in trace, and most of these tools

are part of the standard Erlang distribution. These include the Observer, The DBG tracer, ET, the Event

Tracer; TTB, The Trace Tool Builder and ETop, The Erlang Top. These are described in more detail in

D5.1/5.2, and in Section 3.5 below.

3.3 Erlang profiling tools

Erlang/OTP contains a number of server profiling tools for finding performance bottlenecks in Erlang

programs, including fprof (function profiling based on tracing, and so quite “heavyweight”), eprof (process

profiling based on the erlang:trace_info/3 BIF, more “lightweight‘ than fprof), cprof (counts number of

function calls; “lightweight”), lcnt (the Lock Profiler) and Percept, which gives a tracing-based overview of

ICT-287510 (RELEASE) 27 February 2015 5

concurrency in Erlang; Percept has been enhanced to Percept2 by the RELEASE project (see next

subsection).

3.4 Percept2

Percept has been enhanced to Percept2 by the RELEASE project, as reported in D5.1 and D5.2. These

enhancements include:

 User-command interface improved to allow the profiling of a particular aspect of the execution.

 Distinguish between running and runnable time for each process.

 Selective function profiling of processes.

 Improved dynamic function call graph.

 Process communication graph.

 Inter-node message passing.

 Tracing of s_group activities in a distributed system.

The system is available from https://github.com/RefactoringTools/percept2

3.5 Observer

The process manager Pman was a tool for viewing processes executing locally or on remote nodes. Its main

purpose was to locate erroneous code by inspecting the state of the processes and by tracing events.

Processes could be inspected individually in a process trace window, in which a user could see trace output

for sent and received messages as well as for called functions and some other process events. It was noted

that Pman had some effect on the real time behaviour of a running system. The Pman application was

superseded by the Observer application, and Pman was removed from OTP in R16B, February 2013.

Observer is a graphical tool for observing the characteristics of Erlang systems. Observer displays system

information, application supervisor trees, process information, ets or mnesia tables and contains a frontend

for Erlang tracing (cf dbg and other interfaces to built-in Erlang tracing). Observer can be used on multi-

node systems.

3.6 Debugging infrastructure

The Erlang system has an integrated debugging facility, the debugger application (not to be confused with

the dbg tracing tool!) The debugger is a graphical user interface for the Erlang interpreter, which can be used

for debugging and testing of Erlang programs. For example, breakpoints can be set, code can be single

stepped and variable values can be displayed and changed. The Erlang interpreter can also be accessed

programmatically via the interface module int.

More details about the debugger application and int module are given in the online Erlang documentation at:

 http://www.erlang.org/doc/apps/debugger/debugger_chapter.html

 http://www.erlang.org/doc/man/int.html

3.7 Wombat

Erlang Solutions – as a part of the RELEASE project – have implemented WombatOAM as a commercial

product. [Quotes from the WombatOAM website.]

https://github.com/RefactoringTools/percept2
http://www.erlang.org/doc/apps/debugger/debugger_chapter.html
http://www.erlang.org/doc/man/int.html

ICT-287510 (RELEASE) 27 February 2015 6

“WombatOAM is an operations and maintenance framework for Erlang based systems. It gives … full

visibility on what is going on in … Erlang clusters either as a stand-alone product or by integrating into …

existing OAM infrastructure.”

“WombatOAM is designed to help developers and operators administer and monitor clusters of Erlang

nodes in heterogeneous public and private clouds. Using hidden nodes and distributed Erlang, WombatOAM

connects to your Erlang cluster. WombatOAM collects and stores metrics, logs and notable events from the

managed Erlang nodes. Its Web Dashboard displays this data in an aggregated manner and provides

interfaces to feed the data to other OAM tools.”

Wombat is a commercial product of Erlang Solutions Ltd.

ICT-287510 (RELEASE) 27 February 2015 7

4 SD-Mon
This section describes the SD-Mon tool which provides the scalable infrastructure to support offline and

online monitoring of SD-Erlang systems through a “shadow network” of nodes designed to collect, analyse

and transmit monitoring data from active nodes and s_groups.

4.1 Introduction

SD-Mon is a tool designed to monitor SD-Erlang systems.

This purpose is accomplished by means a shadow network of agents, mapped onto the running system. The

network is deployed on the base of a configuration file describing the network architecture in terms of hosts,

Erlang nodes, global group and s_group partitions. SD-Mon can be used to understand the correct partition

of nodes in groups. At an initial stage, just by looking at the inter-node messages flow, it can drive the initial

partition itself. After that it can be used to trim the network architecture and to monitor the system, revealing

anomalies like intergroup messages bypassing the "bridge" nodes.

The tracing to be performed on monitored nodes is also specified within the configuration file. An agent is

started by a master SD-Mon node for each s_group and for each free node. Configured tracing is applied on

every monitored node, and traces are stored in binary format in the agent file system.

The shadow network follows system changes so that agents are started and stopped at runtime according to

the needs. Such changes are persistently stored so that the last configuration can be reproduced after a restart.

Of course the shadow network can be always updated via the User Interface.

As soon as an agent is stopped the related tracing files are fetched across the network by the master and they

are made available in a readable format in the master file system.

4.2 Overall Architecture

SD-Mon is an Erlang application based on a master-agent architecture.

 Currently sub-masters are not supported so each agent is directly linked to the master.

Agents run as Erlang hidden nodes in order not to propagate node connections across the network.

4.2.1 Master

The Master is a gen_server started and supervised by a supervisor process at application startup.

The shadow network is deployed according to a specified configuration. In order to limit network usage the

host running the maximum number of Erlang nodes is chosen to run the agent as well. Once the agents are

started they ask for configuration data, consisting of:

 nodes to be monitored

 traces to be run on them.

ICT-287510 (RELEASE) 27 February 2015 8

Figure 1: SD-Mon shadow network

Each network change in the s_group structure is cached by agents and notified to the master, which is the

only one having a global network view. It takes care to restructure the shadow network accordingly: for

instance if a new s_group is created a new agent is started, if an s_group is deleted the related agent is

stopped, the tracing files are gathered from its host, and new agents are started for its nodes not controlled by

any other agent.

Moreover, changes are dumped in new configuration files (the originals are saved) in order to allow the tool

to be able to access the last known configuration in case of restart.

User can start and stop the sdmon application, start and stop single agents and ask for the master status.

Trace files related to an agent, controlling a group or a free node, are gathered each time an agent is closed at

runtime or when the whole application is closed. Binary files are moved at the master host under the

BASEDIR/SD-Mon/traces/ directory and decoded on the fly, from now on being BASEDIR the base

directory where the tool is installed. A text file is produced for each controlled node and a summary of

statistics is created for each agent and at global system level.

System events are logged by the master under BASEDIR/SD-Mon/logs.

 AAggeenntt
AAggeenntt AAggeenntt AAggeenntt

AAggeenntt

MMAASSTTEERR

ss__ggrroouupp 11 ss__ggrroouupp 22 gglloobbaall ggrroouupp ffrreeee nnooddeess

ICT-287510 (RELEASE) 27 February 2015 9

4.2.2 Agents

Each agent takes care of an s_group or of a free node. At startup it tries to get in contact with its nodes and

apply the tracing to them as stated by the master. Binary files are stored in the host file system.

Tracing is internally used in order for the system to be aware of the s_group operations – namely create or

delete a s_group, add or remove nodes to a s_group – that happen at runtime. An asynchronous message is

sent to the master whenever one of these changes occurs.

Since each process can only be traced by a single process at the time, each node (included those belonging to

more than one s_group) is controlled by only one agent.

When a node is removed from a group or when the group is deleted, another agent takes over, as shown in

Figure 2.

When an agent is stopped, all traces on the controlled nodes are switched off.

Figure 2: Delete s_group 2

AAggeenntt

AAggeenntt

ss__ggrroouupp 11

AAggeenntt

nneeww

AAggeenntt
 nneeww

AAggeenntt

ss__ggrroouupp 11 ffrreeee nnooddeess

ICT-287510 (RELEASE) 27 February 2015 10

4.2.3 Robustness

A double robustness mechanism is adopted against network turbulence and failures.

First of all every agent node is monitored so that as soon as a nodedown message is received a direct

monitoring for that node is initiated: a dedicated process is spawned to poll the missing node and when it

comes up again a nodeup notification is sent to the master who checks the agent status and align the system

to any changes performed in the meantime.

This is done with the second mechanism which is based on a configuration token (see Figure 3).

A token is an integer identifying the current valid configuration: it is sent to the agent (who stores it) every

time something changes in the related part of the network. After a nodeup event the master sends the current

token to the agent and if it does not match, the agent is configured from scratch. This strategy ensures fast

recovery from network failures.

Figure 3: nodedown use case

Direct monitoring is also applied by the agents on the controlled nodes when a nodedown event occurs.

Tracing is re-established at nodeup.

once

a second

Master Agent

nodedown

start direct monitor
ping

ping

pong

nodeup

 monitor

last token

Token not

matching

get configuration

configuration

Restart

tracing on

all nodes

ICT-287510 (RELEASE) 27 February 2015 11

4.2.4 Configuration and Trace

The tool can be launched on a running system by means of 2 configuration files:

 group.config

 trace.config

The first of these files, which is also used by s_group processes, is defined as a configuration parameter of

the kernel application and states the group partition of the system in terms of s_group names and related

Erlang nodes.

The second one specifies the tracing to be applied on each group of nodes.

Both files are placed under BASEDIR/SD-Mon/config/.

These files can be written by hand or can be generated with the test command gen_env starting from a

unique, high level configuration file named test.config which is placed in BASEDIR/SD-

Mon/test/config/

This file consists of a set of Erlang terms defining the system to be observed. It is mainly composed of 5

sections:

1) First section is optional. Here you can state the IP address to be used for all Erlang nodes running on the

localhost. If left empty, the address will be deduced from the operating system.

2) The second section lists the hosts on which the system is running.

3) The third section is an integer stating how many Erlang nodes (virtual machines) should be started for

each host.

4) In this part groups are listed

5) The last part describes the traces to be gathered for each group

Currently three tracing options are supported but more can be added in future: inter-node, garbage collection

and scheduler. We describe these in turn now.

 inter_node

Enables tracing of inter-node and inter-group messages, i.e. messages sent by a process to a

destination outside its own node and group.

Note that this feature is always active since it is internally used by the tool. It is reported here for the

sake of completeness.

For each message sent by a monitored process out of its own Erlang node two entries will be

reported in the related trace file:

 The original trace message in the form:

{trace, FromPid, send, Msg, ToPid}

 The following tuple:

{trace_inter_node, FromNode, ToNode, MsgSize}

In the event that the destination node ToNode is not part of the same group of the sender node

FromNode, a third entry will be reported:

ICT-287510 (RELEASE) 27 February 2015 12

 {trace_inter_group, FromGroups, ToGroups}

where the last two elements are the lists of groups of which the sender and the receiving nodes are

part of. The empty list is used for free nodes.

Example of inter_group message:

{trace,<2922.112.0>,send,{vertex,3955,2597,45},<2918.125.0>}.

{trace_inter_node,'node4@129.12.3.211','node4@129.12.3.176',24}.

{trace_inter_group,[group3],[group2]}.

garbage_collection

Enables tracing on garbage collection.

Original trace messages will be reported in tracing files (see official Erlang documentation)

 scheduler

Produces information about process scheduling.

Original trace messages will be reported in tracing files (see official Erlang documentation).

It is also possible to define Erlang commands to be executed on the monitored system through a MFA tuple.

4.2.5 Post-mortem analysis

When agents are stopped a new directory (whose name is a timestamp in the form yyyymmdd_hhmmss) is

created in the master file system under the traces\ directory.

For each closed agent a sub-directory with its name is also created and all binary files related to the agent are

moved in it. Then a readable version (.txt) of them is created for each controlled node and stored in the same

directory together with a summary of statistical data for that agent (file STATISTICS.txt).

Lastly, statistics at system level are also created and stored in GLOBAL_STATISTICS.txt.

The following graph gives an example of directory structure.

traces/

└── 20150202_141045/

 ├── GLOBAL_STATISTICS.txt

 ├── sdmon_group1@127.0.1.1/

 │ ├── sdmon_group1@127.0.1.1_traces_0_node1@127.0.1.1

 │ ├── sdmon_group1@127.0.1.1_traces_0_node1@129.12.3.176

 │ ├── sdmon_group1@127.0.1.1_traces_0_node1@129.12.3.211

 │ ├── sdmon_group1@127.0.1.1_traces_1_node1@127.0.1.1

 │ ├── …

 │ ├── sdmon_group1@127.0.1.1_traces_node1@127.0.1.1.txt

 │ ├── sdmon_group1@127.0.1.1_traces_node1@129.12.3.176.txt

 │ ├── sdmon_group1@127.0.1.1_traces_node1@129.12.3.211.txt

 │ └── STATISTICS.txt

 ├── sdmon_group2@129.12.3.176/

 │ ├── sdmon_group2@129.12.3.176_traces_0_node1@129.12.3.176

 │ ├── …

 │ └── STATISTICS.txt

 └── sdmon_group3@129.12.3.211/

 ├── sdmon_group3@129.12.3.211_traces_0_node1@129.12.3.211

 ├── …

 └── STATISTICS.txt

ICT-287510 (RELEASE) 27 February 2015 13

The most relevant information included in the global statistic file are organized in 4 tables:

1. Node Tab

Represents sent inter-node messages by any node.

The format of each entry is:

{FromNode, [{ToNode, TotalSize, NumOfMessages} | ..]}

where:

 FromNode and ToNode are the sender and the receiving nodes

 TotalSize is the total size in bytes of all sent messages

 NumOfMessages is the total number of sent messages

2. Sent Tab

Reports inter-node and inter-group messages sent by any node.

The format of each entry is:

{FromNode, {Inter_node, Inter_group, IG/IN}

where:

 FromNode is the sender node

 Inter-node is the number of inter-node messages sent

 Inter-group is the number of inter-group messages

 IG/IN percentage of inter-group messages

3. Flow Tab

Reports incoming and outgoing inter-node messages for any node.

The format of each entry is:

{Node, Incoming, Outgoing}

where:

 Incoming is the number of incoming inter-node messages

 Outgoing is the number of outgoing inter-node messages

4. Bridge Flow Tab

Bridges are nodes belonging to more than one group, which are supposed to vehicle all traffic

crossing adjacent groups. Reports inter-node and inter-group messages sent by any node.

The format of each entry is:

{Node, B_Incoming, B_Outgoing}

where:

 B_Incoming is the number of incoming inter-node messages sent by nodes belonging to at

least one of Node‘s groups

ICT-287510 (RELEASE) 27 February 2015 14

 B_Outgoing is the number of outgoing inter-node messages sent to nodes belonging to at

least one of Node‘s groups

NOTE: in the actual Erlang implementation Sent Tab, Flow Tab and Bridge Flow Tab also includes message

size or average size for each field, not shown here for the sake of clearness.

An example of global statistic data can be found in Appendix A2.

4.2.6 Run-time visualization

A basic function has been introduced in order to follow system evolution at run-time.

It is only related to sent inter-node messages. When inter-node messages are detected by the tracing

processes, they sent a message to their own agent in the form:

{in, FromNode, ToNode}

The agent just forwards the message to a process named sdmon_db on the Master node.

In case the process is not started this message is lost and everything keeps going on as usual.

When, instead, the process is started (by calling sdmon_db:start()) it creates an ets table, which is an

ordered set having the tuple {FromNode, ToNode} as key and associated to a counter.

After that the process enters the receiving loop, waiting for inter-node notifications from agents: every

message just increases the counter for the involved nodes.

Moreover, every 0.5 second the whole table is dumped on the text file /tmp/in_tab.txt.

In a system composed of N nodes the table will hold Nx(N-1) elements in the worst case, represented within

the file as a list of tuples {{FromNode, ToNode}, Counter}.

In this way it is possible to follow run-time updating for instance by means of the OS command:

tail –f /tmp/in_tab.txt

For demo purposes it is also possible to use the following commands:

watch_internode starts a terminal who follows the file (max. 45 entries)

watch_internode2 starts 2 terminals (max. 45 entries each). See snapshot below.

ICT-287510 (RELEASE) 27 February 2015 15

Figure 4. Run-time visualization

4.3 How to run SD-Mon

The following prerequisite applies to be able to run the tool:

 The user must be able to execute SSH commands on target non-local hosts without the needs to

provide a password (use ssh-keygen if needed).

The userid granted to access remote nodes via SSH without password must be defined in

test.config file (‘uid’ tag).

To install the tool, execute the following commands from a terminal:

git clone https://github.com/RefactoringTools/SD-Mon

cd SD-Mon

make

SD-Mon is started by executing from the installation directory (BASEDIR/SD-Mon) the bash script:

> sdmon_start

configuration files are read and the shadow network is started. SD-Mon is normally executed in detached

mode, without a shell. For debugging purposes a ‘-v’ option is available: the Erlang shell on the master node

is opened and the user can interact with the master or simply follows the system evolution.

By executing:

> sdmon_stop

SD-Mon is stopped: all tracing is removed, agents are terminated and all tracing files are downloaded in the

master file system (/traces directory).

ICT-287510 (RELEASE) 27 February 2015 16

4.3.1 Example 1: SD-ORBIT on single-host

In this example SD-ORBIT is run on a system composed of 5 nodes, all running on local host and distributed

in two s_groups, as depicted in Figure 5.

Figure 5: SD-ORBIT on five nodes

ORBIT parameters are:

 Generators: bench:g124/1

 Size of space: 50000

 Processors: 8

To execute this test open a terminal and type

(after replacing <BASEDIR> with the actual base directory):

export PATH=<BASEDIR>/SD-Mon/bin/:<BASEDIR>/SD-Mon/test/bin/:$PATH

cd <BASEDIR>/SD-Mon

cd test/config

rm test.config

ln -s test.config.orbit test.config

 Agent Agent

MASTER

group 1 group 2

node3
node1

node2 node4

node5

ICT-287510 (RELEASE) 27 February 2015 17

cd ../../

run_env

sdmon_start -v

open a new terminal and attach to node1 Erlang shell:

export PATH=<BASEDIR>/SD-Mon/bin/:<BASEDIR>/SD-Mon/test/bin/:$PATH

cd <BASEDIR>/SD-Mon

watch_internode

to_nodes node1

sdmon_test:run_orbit_on_five_nodes().

The terminal started by the watch_internode command will show internode message counters updating at

runtime, each entry in the form {{FromNode, ToNode}, SentMessages}.

When Orbit run is completed go back on the first terminal and type:

application:stop(sdmon).

Find tracing and statistics in <BASEDIR>/SD-Mon/traces.

4.3.2 Example 2: SD-ORBIT on multi-host

In this case SD-Orbit is run on localhost and on two remote hosts: myrtle.kent.ac.uk (129.12.3.176)

and dove.kent.ac.uk (129.12.3.211).

The orbit parameters are the same as before, with the exception of the size of space, decreased to 10000.

The system is composed of nine nodes grouped in two s_groups, as shown in Figure 6.

To execute this demo, edit the file BASEDIR/SD-Mon/test/config/test.config.orbit_3h and

replace the string "md504" with the proper user id (see above).

Now open a terminal and (after replacing <BASEDIR>) type:

export PATH=<BASEDIR>/SD-Mon/bin/:<BASEDIR>/SD-Mon/test/bin/:$PATH

cd <BASEDIR>/SD-Mon

cd test/config

rm test.config

ln -s test.config.orbit_3h test.config

cd ../../

run_env

sdmon_start –v

open a new terminal and attach to node1 erlang shell:

export PATH=<BASEDIR>/SD-Mon/bin/:<BASEDIR>/SD-Mon/test/bin/:$PATH

cd <BASEDIR>/SD-Mon

watch_internode2

to_nodes node1

sdmon_test:run_orbit_on_nine_nodes().

This time message counters will be displayed on 2 terminals.

When Orbit run is completed go back on the first terminal and type:

ICT-287510 (RELEASE) 27 February 2015 18

application:stop(sdmon).

Find tracing and statistics in <BASEDIR>/SD-Mon/traces.

Figure 6: SD-ORBIT on nine nodes

Only inter_node tracing is enabled in this example, therefore only inter_node and inter_group messages

are included in the resulting tracing files.

 Agent

MASTER

group 2 group 3

node3

node1

node2
node4

node1

node1

AAggeenntt

node4

 AAggeenntt

ggrroouupp 11

node3

node2

myrtle@kent.ac.uk

129.12.3.176

dove@kent.ac.uk

129.12.3.211

localhost

mailto:myrtle@kent.ac.uk
mailto:dove@kent.ac.uk

ICT-287510 (RELEASE) 27 February 2015 19

Here are some statistics reporting sent inter-node messages during a run of this example:

Node Inter-node Inter-group IG/IN

node1@localhost 2271 1133 49.9%

node1@myrtle
1877 431 23.0%

node2@myrtle
2667 1775 66.6%

node3@myrtle
2556 1683 65.8%

node4@myrtle
2481 1596 64.3%

node1@dove
1874 388 20.7%

node2@dove
2583 1680 65.0%

node3@dove
2505 1606 64.1%

node4@dove
2345 1405 59.9%

Total number of inter-node messages 21159

Max inter-node messages node sender
number of sent messages

node2@myrtle
2667

Total number of inter-group messages 11697

Max inter-group messages group sender
number of sent messages

group2
5485

inter-group messages / inter-node messages 55.3%

The following table summarizes the message flow through “bridge nodes”, which are the nodes belonging to

more than one group and through which all communication toward and from external groups is supposed to

pass.

The incoming messages reported in the table are those sent to the bridge node by any other node that is

member of at least one of its groups. For instance, the incoming messages considered for node1@myrtle

are those sent by node1@localhost and node1@dove (members of group1) and by node2@myrtle,

node2@myrtle, node3@myrtle and node4@myrtle (members of group2).

The outgoing messages are instead those sent by the bridge node to any other node that is member of at least

one of its groups. For instance, the outgoing messages considered for node1@myrtle are those sent to

node1@localhost and node1@dove (members of group1) and to node2@myrtle,

node2@myrtle, node3@myrtle and node4@myrtle (members of group2).

Inter-node messages not reported in the table are sent or received by external nodes, bypassing the bridging

role of the bridge nodes.

ICT-287510 (RELEASE) 27 February 2015 20

 Bridge Flow Tab
TOTAL

INCOMING

TOTAL

OUTGOING

node1@myrtle 2540 1446

node1@dove 2752 1486

Global statistic data for this example can be found in Appendix A2.

ICT-287510 (RELEASE) 27 February 2015 21

5 Devo
Devo is an online visualisation tool for SD-Erlang programs, described in Deliverable 5.2 and available

online from https://github.com/RefactoringTools/devo. Devo underwent some fairly major changes since

D5.2 was delivered: in order

 to make the devo visualisation scalable to situations with more than a handful of s_groups, and

 to make devo easier to deploy and to integrate with other tools

the visualisations were changed significantly and a large amount of refactoring took place in both the

server and client-side code.

5.1 Visualization Changes

The visualization options available to a user have been simplified to two options “Low” and “High” level

visualizations. The low level visualization shows process migrations and the run queue lengths of a single

Erlang node. This option was available previously but has been renamed.

The high level visualization has undergone more extensive changes. The shape of the s_groups is displayed

using D3’s force-directed graph.

The s_groups to which a node belongs are indicated by the colour(s) of the graph node representing the

Erlang node, and the edges connect nodes within the same group. When a single node is in more than one

group the node’s colour is split between the two appropriate colours. When the nodes communicate with

each other the edges change colour to indicate the level of communication between those two nodes relative

to amount other nodes are communicating with each other.

https://github.com/RefactoringTools/devo

ICT-287510 (RELEASE) 27 February 2015 22

In the previous version, groups were indicated iconically by circles enclosing the nodes, but while this novel

visualisation was appropriate for relatively small numbers of s_groups it did not scale to larger numbers of

nodes.

5.2 Back-end refactoring

Before the new visualizations were completed Devo’s back-end was refactored to make it simple to make

changes to the system in the future. All dependencies to PHP and Java have been removed. Java was used to

help draw the previous high level visualization and PHP facilitated the communication between Javascript

and Java. With the update to the high level visualization both PHP and Java became unnecessary, and the

visualisation now relies on putting together Erlang and standard web technology, including JavaScript.

Finally we have begun removing hard coded data to allow for Devo to be integrated into other projects.

5.3 Future work to Devo

For now future development to Devo will focus on backend developments to increase Devo’s robustness and

integrability. Increased testing of integrating Devo with other Erlang projects will help refine and expand

Devo’s integration procedures.

Another major downside that the developers are aware of is that Devo can only profile nodes that a user has

told it about. It would be ideal for Devo to automatically detect and profile all of the s_groups and nodes

within an Erlang system.

Devo’s source repository can be found here: https://github.com/RefactoringTools/devo. If you have any

questions or comments about Devo please email Stephen Adams at sa597@kent.ac.uk.

https://github.com/RefactoringTools/devo

ICT-287510 (RELEASE) 27 February 2015 23

6 OTP Patch to augment tracing

Augmenting work reported

earlier in the project (WP1,

Section 7.2) extensions to

the Erlang/OTP built-in

trace facility have been

submitted as patches to

Erlang/OTP. These allow

trace messages to be

generated selectively – and

so not to overwhelm

tracing systems – and this

has been done to support

tracing of only those

messages that are to

processes on remote nodes,

thus supporting monitoring

of the distributed aspects of

a system.

ICT-287510 (RELEASE) 27 February 2015 24

7 Conclusion
In this deliverable we have presented three additions to the Erlang ecosystem specifically designed to support

monitoring and debugging of the “Scalable Distributed” (SD) aspects of SD Erlang, namely: SD-Mon, which

supports off and online monitoring of SD-Erlang systems by means of a shadow network of monitoring

nodes; a substantially re-engineered version of Devo, designed to give a more scalable visualisation of

distributed Erlang systems, and also a patch to Erlang/OTP to support more efficient monitoring of inter-

node messages in Erlang distributed systems.

Change Log

Version Date Comments

0.1 28/02/2015 First version submitted to internal reviewers

References
1. SD-Mon: https://github.com/RefactoringTools/SD-Mon

2. Devo: https://github.com/RefactoringTools/devo

3. SD Orbit: https://github.com/release-project/benchmarks

4. Percept2: https://github.com/RefactoringTools/percept2

https://github.com/RefactoringTools/SD-Mon
https://github.com/RefactoringTools/devo
https://github.com/release-project/benchmarks
https://github.com/RefactoringTools/percept2

ICT-287510 (RELEASE) 27 February 2015 25

Appendix

A. SD-Mon

A1. Directory Structure

The SD-Mon directory structure is represented in the schema below.

SD-Mon

├── bin

├── config

├── doc

├── ebin

├── logs

├── src

├── test

└── traces

── bin

 ├── sdmon_start script to start the tool

 ├── sdmon_stop script to stop the tool

 ├── to_master script to attach to the master node shell

 └── to_node script to attach to any other Erlang node

── config

 ├── group.config the group configuration file

 └── trace.config the trace configuration file

── doc/ tool documentation

── ebin/ Erlang compiled code + sdmon.app file

── logs/ contains log files for master and agents

── src Erlang source code

 ├── run_env.erl test environment start and generation of configuration files

 ├── sdmon_app.erl sdmon application file

 ├── sdmon.erl agent code

 ├── sdmon_db.erl erun-time visualization db code

 ├── sdmon_master.erl master code

 ├── sdmon_sup.erl application supervisor

 ├── sdmon_trace.erl tracing code

 └── sdmon_worker.erl test code

── test

 ├── bin

 │ ├── gen_env script to generate configuration files

 │ ├── run_env script to run the test environment

 │ └── ... Other utility test scripts

 ├── config

 │ └── test.config test configuration file, normally a soft link to the proper one

 ├── ebin/ Erlang compiled code

 ├── sderlang/ test dependency

 ├── sd-orbit/ test dependency

 └── src/ Erlang source code

── traces trace files (see section Error! Reference source not found.).

ICT-287510 (RELEASE) 27 February 2015 26

A2. Global Statistics for Example 2

ICT-287510 (RELEASE) 27 February 2015 27

Sent Tab inter-node inter-group IG/IN

node1@127.0.1.1 2271 1133 49.9%

node1@129.12.3.176 1877 431 23.0%

node2@129.12.3.176 2667 1775 66.6%

node3@129.12.3.176 2556 1683 65.8%

node4@129.12.3.176 2481 1596 64.3%

node1@129.12.3.211 1874 388 20.7%

node2@129.12.3.211 2583 1680 65.0%

node3@129.12.3.211 2505 1606 64.1%

node4@129.12.3.211 2345 1405 59.9%

Node

Flow Tab Incoming Outgoing

node1@127.0.1.1 4590 2271

node1@129.12.3.176 4137 1877

node2@129.12.3.176 1355 2667

node3@129.12.3.176 1242 2556

node4@129.12.3.176 1368 2481

node1@129.12.3.211 4435 1874

node2@129.12.3.211 1311 2583

node3@129.12.3.211 1322 2505

node4@129.12.3.211 1346 2345

Node

ICT-287510 (RELEASE) 27 February 2015 28

B. Devo README file
To compile the code you need rebar in your PATH.

Type the following command:

$ make

Then:

$ cd tests

$ erlc *.erl

B1. Introduction to Devo

Devo has two visualisation modes, low and high level. The low level visualisation shows the length of each

run queue on each of your processor's cores and the migration of processes between cores.

The high level visualisation is dependent on the SD-Erlang S_group feature. This visualisation shows each of

the nodes in your system, colours them according to which s_group they belong to, and displays the amount

of message sending that is currently occurring within each s_group.

B2. The Devo interface

You can start the devo server from the root devo directory by running

./start.sh

In a web-browser if you navigate to 'localhost:8080' the Devo home page should be displayed. There

should be two radio buttons at the top that allow you to select which type of visualisation you want. Below

that is where you must list the nodes that you want Devo to visualize. You can manually enter the node name

into the text field or if your nodes follow a numeric pattern (e.g. 'node1@127.0.0.1',

'node2@127.0.0.1', ...) Devo can generate these names for you. Finally there is the start/stop button

that toggles the visualisation on or off.

B3. Running Examples

Start a devo server as described above.

Open a new terminal window and go to the 'devo/tests' directory and run:

./start.sh node1@127.0.0.1

An Erlang repl should be running in this terminal now. Go back to the devo web page and add 'node1' to

the list of Devo's nodes, and start the visualisation. You should see the graphic representing your processor's

cores but nothing will be running. Go back to the terminal with the node1 repl and enter

orbit:run_on_one_node().

now if you look at your web-browser you should see the visualisation.

ICT-287510 (RELEASE) 27 February 2015 29

B4. High Level Visualisation

You must have SD Erlang installed to run the high level visualisation

First, if you just ran the low level example kill the 'node1' repl. In a terminal that is in the 'devo/tests'

directory run

./fiveNodeLocalStart.sh

You should now see an Erlang repl for 'node1@127.0.0.1'. The difference is that this time there are

four additional Erlang nodes running in the background.

Go to the devo webpage and generate five Erlang nodes, the basename is "node", the start index is 1, the

end index is 5, and the domain is "@127.0.0.1". When you start the visualisation this time the five nodes

should appear as colored circles. To run this example go back to the 'node1' repl and enter

high_level_test:run().

this will take you through a set of s_group operations and distributed computing examples which will be

visualised by Devo.

B5. Integrating Devo into your Project

Using Devo to visualize your own project should be fairly simple.

The first step is including Devo's custom implementation of the DBG module in your project's path. After

running the make command you can copy devo_dbg.beam from the ebin folder to your project's path.

If your project has some initial s_group configuration without calling new_s_group then this configuration

should be placed in an s_group.config file. For example config file syntax see:

%DEVOROOT%/tests/s_group.config

Now you are ready to startup devo and your own project. After both of these services are running navigate to

the devo homepage and you should be ready to start profiling.

