
ICT-287510
RELEASE

A High-Level Paradigm for Reliable Large-Scale Server Software
A Specific Targeted Research Project (STReP)

D5.1 (WP5): Offline SD Erlang Profiling Tool

Due date of deliverable: 30th September 2012
Actual submission date: 30th September 2012

Start date of project: 1st October 2011 Duration: 36 months

Lead contractor: University of Kent Revision: 0.1

Purpose: To design and deliver an offline profiling tool reporting monitoring and visualization results
in static reports and interactively.

Results: The main results of this deliverable are

� Percept2, a version of the Percept tool enhanced with functionality to support multicore and
distributed systems, and also refactored to support scalability.

� Extension of the built-in Erlang tracing mechanism to support scalability.

� Sampling-based profiling of Erlang systems.

� Extension of the DTrace/SystemTap system for Erlang including new probes, and reports.

Conclusion: We have delivered a first set of tools to support profiling for SD Erlang.

Project funded under the European Community Framework 7 Programme (2011-14)
Dissemination Level

PU Public >
PP Restricted to other programme participants (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential only for members of the consortium (including the Commission Services)

ICT-287510 (RELEASE) 23rd October 2012 1

Offline SD Erlang Profiling Tool

Contents

1 Executive Summary 2

2 Introduction 2

3 Related work 2
3.1 Erlang built-in tracing . 2
3.2 Tracing and Profiling Tools . 3

3.2.1 Erlang tracing tools . 4
3.2.2 Erlang Profiling tools. 5

3.3 DTrace and SystemTap . 8
3.3.1 Features and architecture of DTrace and SystemTap 8
3.3.2 DTrace/SystemTap and Erlang/OTP . 9

4 Extending Percept: Percept2 10
4.1 Introduction . 10
4.2 Percept2 by example . 10

4.2.1 Profiling . 10
4.2.2 Analysing . 11
4.2.3 Data viewing . 12

5 Using DTrace/SystemTap 17
5.1 Technical issues . 17
5.2 Experimental tools . 18
5.3 DTrace/SystemTap Percept . 20

5.3.1 DTrace/SystemTap Percept by example . 20

6 Other Contributions 22
6.1 Sampling-based profiling . 22
6.2 Experimental extensions to the Erlang built-in trace . 22

6.2.1 Message size vs. message . 23
6.2.2 Dynamic trace data filtering . 23

7 Future plans 23

8 Conclusions 24

ICT-287510 (RELEASE) 23rd October 2012 2

1 Executive Summary

This report presents the first version of the deliverable D5.1 for the RELEASE project. The aim of this
deliverable is to provide tools to support the offline understanding and tuning of massively multicore
systems written in Scalable Distributed Erlang (SD Erlang).

This first release has concentrated on tools supporting the multicore implementation of Erlang,
while also providing support for aspects of distribution. A second release, in month 24 of the project,
will provide explicit support for the features of SD Erlang. The main results of this deliverable are

� Percept2, a version of the Percept tool enhanced with functionality to support multicore and
distributed systems, and also refactored to support scalability.

� Extension of the built-in Erlang tracing mechanism to support scalability.

� Sampling-based profiling of Erlang systems.

� Extension of the DTrace/SystemTap system for Erlang including new probes, and reports.

2 Introduction

At the heart of the RELEASE project is the development of SD Erlang, that uses Erlang distribution to
handle large-scale multicore systems in Erlang. SD Erlang has been designed, and will be implemented
in the second year of the project.

To build SD Erlang systems of any size, it is necessary to monitor and visualise the behaviour of
these systems, and Work Package 5 of RELEASE is designed to do this. While many-core systems
in SD Erlang will necessarily be distributed, it is also the case that they will contain single multicore
processing elements that deploy Erlang. Monitoring and visualising SD Erlang will therefore necessarily
require in-node observation as well as monitoring what goes on between nodes.

The deliverable D5.1 outlines the progress of the project in meeting this goals, and in particular
describes in detail the innovations that have been made in offline monitoring and visualisation for
Erlang multicore and distributed systems. These include enhancements of tools within the Erlang
ecosystem, including Percept, the built-in facilities for Erlang tracing, and further development of the
facilities for tracing by means of DTrace/SystemTap.

These constitute the first delivery of offline monitoring tools, and a second delivery will be made in
M24, complementing the delivery of the implementation of SD Erlang itself in M18.

The rest of this report is structured as follows. Section 3 covers background and related work
in tracing and profiling for Erlang, and describes both the foundational technologies (Erlang built-in
tracing, DTrace) and tools already built using these. Section 4 describes in detail how the Percept
tool has been extended by the project to Percept2. Section 5 describes the extensions provided by the
project to DTrace/SystemTap, and how these are used in profiling and visualisation, and Section 6
describes a number of other contributions, before future work is summarised in Section 7.

3 Related work

3.1 Erlang built-in tracing

The Erlang [CT09, Arm10] runtime system has built-in support for tracing many types of events. With
the built-in tracing, an Erlang program can be traced while being executed, and no special compilation
or instrumentation of the program is needed.

Erlang’s built-in support for tracing is exposed to users through a number of built-in functions
(BIFs), i.e. erlang:trace/3, erlang:trace pattern/3, erlang:trace info/2, etc. The

ICT-287510 (RELEASE) 23rd October 2012 3

function erlang:trace/3 enables and disables the low-level tracing. When enabling the tracing, the
user can specify which processes to trace, and which events they are interested in. The process that
makes the call to erlang:trace/3 to enable the tracing is known as the tracer process. In Erlang,
at any one time, a process can only be traced by one tracer process.

Events that can be traced include: global and local function calls, process-related activities, message
passing, garbage collection and memory usage.

When tracing is enabled, trace events are sent as messages of the following format:

{trace, Pid, Tag, Data1 [,Data2]}

where [,Data2] denotes an optional field dependent on the trace message type. If the timestamp flag
is given, the first element of the tuple will be trace ts instead and the timestamp is added last in
the tuple.

The erlang:trace pattern/3 BIF, used in conjunction with erlang:trace/3, is for en-
abling the tracing of local and global function calls. With erlang:trace pattern/3, a user can
specify the subset of functions to be traced using Erlang’s match specification. A function
call/return to trace event will be generated only if a traced process executes a traced function.

Erlang’s built-in tracing is powerful, but not without limitations:

� first, because a traced process can only have one tracer process at any one time, it is impossible
to have several tools requiring trace information run concurrently on a node;

� second, while match specification can be used to have a fine control over what kind of function
call/return to trace events to generate, the similar kind of dynamic filtering support is not
available to other trace events. Aggregation of trace results is not supported either;

� third, there is no support for remote or distributed tracing, that is all settings have to be executed
on the node and the trace process has to be node local;

� finally, tracing too much adds overhead, and could slow down the application being traced signif-
icantly.

Sequential Tracing. Apart from the tracing support provided by erlang:trace/3, Erlang
provides another facility especially for tracing all messages resulting from one initial message, which is
known as sequential tracing.

Sequential tracing is a way to trace a sequence of messages sent between different local or remote
processes, where the sequence is initiated by one single process. In Erlang, each process has a trace
token, which can be empty or not empty. The trace token is passed invisibly with each message. To
start a sequential trace, the user explicitly sets the trace token in the process that will send the first
message in a sequence. The trace token of a process is set each time the process matches a message in
a receive statement, according to the trace token carried by the received message, empty or not.

On each Erlang node a process can be set as the system tracer. This process will receive trace
messages each time a message with a trace token is sent or received (if the trace token flag send or
receive is set). The system tracer can then print each trace event, write it to a file or whatever
suitable.

3.2 Tracing and Profiling Tools

The Erlang built-in functions for tracing are powerful, but they are also very low-level and are not very
user-friendly. In practice, a sequence of function calls are needed to setup an interesting trace. Apart

ICT-287510 (RELEASE) 23rd October 2012 4

from that, there are no ready-to use BIFs from Erlang for the display and analysis of trace results.
Unsurprisingly, a collection of tracing/profiling tools have been built on top of Erlang’s built-in trace,
and most of these tools are part of the standard Erlang distribution. A brief description of each of
these tools follows.

3.2.1 Erlang tracing tools

The main Erlang tracing tools are discussed here.

� Pman - the Process Manager. Pman [pma] is a graphical tool built on top of the Erlang
built-in trace for inspecting the state of processes in Erlang systems. With Pman it is also possible
to trace events in the individual processes, such as the current function the process is executing,
the number of messages in the process’s mailbox, etc.

� The DBG tracer. Complement to Pman, the dbg [dbg] tracer is a text-based debugger providing
a user-friendly interface to the trace and trace pattern BIFs. To eliminate the complexity
of writing complex match specifications for tracing functions, DBG provides a function called
dbg:fun2ms/1, which converts specifications that are described using fun syntax into match
specifications.

� ET - the Event Tracer. ET [et] also uses the built-in trace mechanism in Erlang, but designed
for displaying message sequence charts for Erlang applications. What distinguishes ET from
other tracing tools is that ET requires the user to instrument their code with calls but it is
designed for displaying message sequence charts for Erlang applications. What distinguishes ET
from other tracing tools is that ET requires that users instrument their code with calls to the
function et:trace me/5 in strategic places where there is interesting information available in
the program. A call to et:trace me/5 may be something like:

et:trace_me(85, from, to, message, extra_stuff)

Those calls to et:trace me/5 in the user code are then traced, and information is collected
from the arguments of these function calls. The information extracted is then used to derive the
message sequence charts.

� TTB - The Trace Tool Builder. TTB [ttb] is a base for building trace tools for single node
or distributed erlang systems. The main features of the TTB are:

– Start tracing to file ports on several nodes with one function call.

– Write additional information to a trace information file, which is read during formatting.

– Some simple support for sequential tracing.

– Restoring of previous configuration by maintaining a history buffer and handling configura-
tion files.

– Formatting of binary trace logs and merging of logs from multiple nodes.

� ETop - The Erlang Top. ETop [eto], like Pman, is also a tool for presenting information about
Erlang processes, but with an aim to present information about Erlang processes similar to the
information presented by top in UNIX. The output from ETop can be graphical or text based.

ICT-287510 (RELEASE) 23rd October 2012 5

3.2.2 Erlang Profiling tools.

Erlang/OTP contains server profiling tools for finding performance bottlenecks in Erlang programs, as
described next.

� fprof. fprof [fpr] measures the execution time for each function, both own time, i.e. how
much time a function has used for its own execution, and accumulated time, i.e. including called
functions. fprof also gives how many times each function has been called. The values are
displayed per process. Compared to other function profiling tools, fprof provides the most
detailed information about where time is spent, but it significantly slows down the program it
profiles.

� eprof. Different from fprof, which is based on erlang:trace/3 and erlang:trace pattern/3,
eprof [epr] is based on the erlang:trace info/3 BIF, which returns trace information about
a process or function. eprof shows how much time has been used by each process, and in which
function calls this time has been spent. eprof does not generate function callgraphs and has
considerable less impact on the program profiled.

� cprof. cprof [cpr] only counts how many times each function is called when the program is run,
on a per module basis. It has a small slowdown effect on the application being profiled.

� lcnt - The Lock Profiler. lcnt [lcn] is not based on the Erlang built-in tracing, instead it is a
tool used to profile the internal ethread locks in the Erlang Runtime System. With lcnt enabled,
internal counters in the runtime system are updated each time a lock is taken. The counters
stores information about the number of acquisition tries and the number of collisions that has
occurred during the acquisition tries. The counters also record the waiting time a lock has caused
for a blocked thread when a collision has occurred.

� Percept - the er lang concurrency profiling tool. Percept [per] is a tool to visualise Erlang
application level concurrency and identity concurrency bottlenecks. It utilises erlang:trace/3
and erlang:system profile/2 to monitor events from process states, i.e. waiting, running,
runnable, free and exiting. A waiting or suspended process is considered an inactive process and
a running or runnable process is considered an active process.

In Percept, events are collected and stored to a file. The file can then be analysed; the analyser
parses the data file and inserts all events in a RAM database, percept db. Once the analysis is
done, the data can be viewed through a web-based interface.

Percept generates an application-level concurrency graph, as the example shows in Fig 1. This
graph shows the number of active processes at any one time during the profiling; dips in the graph
represents low concurrency. One can zoom in on different areas of the graph to get a clear picture
for a specific time interval.

Clicking on the processes button from the menu leads to a page showing the process table, as
shown in Fig 2. Each table row shows information about a process, including a lifetime bar that
presents a rough estimate in green color about when the process was alive during profiling, an
entry-point, its registered name if it had one and the process’s parent id. Process ids in this
table are click-able, and clicking on a process id direct you to the process information page for
this process, as shown in Fig 3. In the process information pages, Percept also shows a process’s
inactive times: how many times it has been waiting and in which function.

In the processes page, it is possible to select a number of processes of interest by ticking the
select box, as shown in Fig 2, and compare their runnability during the execution by pressing the
compare button.

ICT-287510 (RELEASE) 23rd October 2012 6

Figure 1: Percept: concurrency overview

Figure 2: Percept: process selection

ICT-287510 (RELEASE) 23rd October 2012 7

Figure 3: Percept: process information page

Figure 4: Percept: process comparison

ICT-287510 (RELEASE) 23rd October 2012 8

As shown in the compare page in Fig 4, the activity bar under the concurrency graph shows
each process’s runnability. The green color shows when a process is active (which is running or
runnable) and the white color represents time when a process is inactive (waiting in a receive or
suspended).

3.3 DTrace and SystemTap

The increasing complexity of computing systems and especially the introduction of multicore technology
to a wide range of users have led to the need to identify performance issues of a running system at all
levels of its software stack. Ideally, this analysis should be performed on a live, running system and
not on information that is first gathered and then analyzed. Furthermore, only information regarding
the observed problems should be collected, in order to minimize overhead and interaction with the
measurement infrastructure. DTrace is a dynamic tracing framework that provides such a functionality.
It can be used by administrators and developers alike to examine the behavior of applications and
the operating system during development or even on live production systems. DTrace provides the
functionality to understand how a system works, track down performance problems across many layers
of software and locate the cause of spurious errors.

In comparison to other similar tools and instrumentation frameworks, DTrace presents several
advantages. It is relatively lightweight, not imposing such a severe overhead to the running system. It
does not require special recompiled versions of the software to be examined. Also, it does not require
different tools to provide a complete view of system behaviour, nor significant post-processing to create
meaningful information from the gathered data.

DTrace was initially developed for the Solaris operating system; it was however soon ported to
OpenSolaris, NetBSD, FreeBSD and Mac OS X. A Linux port is also available but does not provide
the full functionality of DTrace. SystemTap is a tool that is similar to DTrace, developed specifically
for Linux. It provides a compatibility layer with DTrace; this allows to annotate the source code once
and, depending on which system it will run, use either DTrace or SystemTap to collect the required
data. SystemTap has been used in the context of RELEASE due to the fact that the Linux port of
DTrace does not support all features of other supported architectures.

3.3.1 Features and architecture of DTrace and SystemTap

DTrace and SystemTap support both static and dynamic instrumentation. Software developers can
introduce instrumentation points in the code. When disabled, these points contain no-operation (NOP)
instructions that have no effect when executed and introduce a negligible runtime overhead. When
enabled, instrumentation points correspond to probes that will fire when execution reaches them.
Probes can be enabled dynamically in the software, as it is being executed.

When a probe fires, it is up to the person analyzing the system to determine what happens. In
general, an appropriate script is executed, written in a special high-level control language that is called
D. This script can collect and aggregate data, manage time stamps, collect stack traces, etc. It is up
to the person analyzing the system to provide a meaningful set of D-scripts that will be executed,
when probes fire in the system under inspection. A predicate mechanism can be used to specify that
D-scripts need to be called only when certain conditions are satisfied. In this way, the person analyzing
the system has full control over the information that is collected.

The overall architecture of DTrace is shown in Figure 5, which presents the main components of the
DTrace infrastructure and their interactions [GM11]. Consumers are the applications that utilize the
DTrace framework by calling into the routines in the DTrace library. Programs such as dtrace (or
stap for SystemTap) are general-purpose consumers, whose behaviour can be specified using D-scripts.
Providers are libraries of probes that provide logical abstractions of complex areas of the system. In

ICT-287510 (RELEASE) 23rd October 2012 9

DTrace Consumers

dtrace lockstat plockstat intrstat

DTrace library (libdtrace.so)

DTrace Driver

User

Kernel

DTrace Kernel Framework

vminfo

sched

nfsv3

fbt

fsinfo

io

pid

lockstat
Dtrace
Providers

Dtrace
Probes

Figure 5: Overview of the DTrace Architecture

essence, they define instrumentation points that can be later enabled and be associated with D-scripts.
In the context of the RELEASE project, the Erlang VM is the most interesting provider.

3.3.2 DTrace/SystemTap and Erlang/OTP

In the context of RELEASE, the importance of DTrace and SystemTap is twofold. First, they can
be used to identify bottlenecks in the Erlang VM itself. The performance of the VM is of extreme
importance, since every construct and operation of an Erlang program has to go through the VM, which
performs the required low-level work. Hence, it became early obvious that analyzing the performance
of the VM would be essential. This use of Dtrace and SystemTap is important for WP 2 of RELEASE
and will not be discussed further here. Second, DTrace and SystemTap can be used to analyze and
profile user applications running in the Erlang VM. This is especially important for WP 5 of RELEASE
and this is where we will focus our attention in this report.

The first effort to annotate the Erlang VM source code (which is written in C) using DTrace probes
was in 2008 by Garry Bulmer and Tim Becker [Bul08]. Their work was performed on the Erlang/OTP
R12, but was later discontinued. Another effort was initiated in 2011 by Scott Lystig Fritchie [Fri11].
His work was finally merged into the official Erlang/OTP source code for release R15B01. According
to the Erlang/OTP documentation, one of the goals of the current implementation is to annotate as
much of the Erlang VM as is practical. Special attention must be paid to file I/O operations performed
in the Erlang VM. The fact that an I/O worker pool is used makes it much more difficult to trace I/O
activity, since a number of different operations can be requested by different threads of that pool. In
essence, the whole I/O driver of the VM has been annotated with DTrace probes. The same holds for
the callback API of drivers. Another specific goal of the current implementation is to allow additional
annotations in Erlang code.

Other parts of the VM have not yet been annotated to the degree that would be desirable to identify
errors or performance bottlenecks. Processes, for example, are currently probed only for very basic
operations, like when they are spawned or when they exit. The scheduler that handles the processes

ICT-287510 (RELEASE) 23rd October 2012 10

is actually not probed for the operations it performs, raising an opportunity to further investigate this
front. Especially when the SMP scheduler is enabled, a number of interesting probes can be inserted
into the code: measure run-queue length per processor, measure number of processes moved during
work stealing, measure attempts to gain a lock of a run-queue and how many succeeded immediately,
etc. A similar situation exists in other modules of the VM, like the garbage collector, the exchange of
messages and data copy. Again of great interest to RELEASE are ETS tables and their performance
when SMP is enabled in the VM. These are only a few examples of the many places where probes could
provide clues about the performance of the Erlang VM.

4 Extending Percept: Percept2

4.1 Introduction

In this section we introduce Percept2, an enhanced version of Percept. Percept2 extends Percept in two
aspects: functionality and scalability. Among the new functionalities added to Percept are:

� Scheduler activity: the number of active schedulers at any time during the profiling.

� Process migration information: the migration history of a process between run queues.

� Statistics data about message passing between processes: the number of messages, and the average
message size, sent/received by a process.

� Accumulated runtime per-process: the accumulated time when a process is in a running state.

� Process tree: the hierarchy structure indicating the parent-child relationships between processes.

� Dynamic function call graph/count/time: the hierarchy structure showing the calling relationships
between functions during the program run, and the amount of time spent in a function.

� Active functions: the functions that are active during a specific time interval.

� Inter-node message passing: the sending of messages from one node to another.

The following techniques have been used to improved the scalability of Percept.

� Compressed process tree/function call graph representation: an approach to reducing the number
of processes/function call paths presented without losing important information.

� Parallelisation of Percept: the processing of profile data has been parallelised so that multiple
data files can be processed at the same time.

� Caching of history web-pages.

4.2 Percept2 by example

In the rest of this section, we describe how to use Percept2, and the functionalities Percept2 supports.

4.2.1 Profiling

There are a few ways to start the profiling of a specific code. The function percept2:profile/3 is
the preferred way.

percept2:profile/3 takes 3 parameters. A file specification for the data destination as the
first argument. The file specification can be a filename (which is the case for Percept) or a wrap file

ICT-287510 (RELEASE) 23rd October 2012 11

specification as what is used by the dbg library. If a single filename is specified, all the trace messages
are saved in this file; if a wrap file specification is used, then the trace is written to a limited number of
files each with a limited size. The actual filenames are Filename ++ SeqCnt ++ Suffix, where
SeqCnt counts as a decimal string from 0 to WrapCnt.

With the current version of Percept2, if the number of files in this wrap trace is as many as WrapCnt
the oldest file is deleted and a new file is opened to become the current (as what is described in dbg). For
off-line profiling, this means some profiling data may get lost. We are in the process of addressing this
problem, and at this stage, we assume the WrapCnt and WrapSize are big enough to accommodate
all the trace data.

The second argument is a callback entry-point, from where the profiling starts. The third argument
is a list of module names whose functions (both exported functions and local functions) will be traced.
No functions will be traced if this list is empty.

To illustrate how the tool works, let’s take a similar code detection algorithm for Erlang programs
as an example. The similar code detection program takes a list of directories/files and some threshold
values as parameters, and returns the similar code fragments found in those Erlang files.

We could use the following command to start the profiling of the similar code detection process:

percept2:profile("sim_code.dat",
{sim_code,sim_code_detection,
[["./test"], 3, 40, 2, 4, 0.8, [], 8]},
[sim_code]).

In this example, we choose to trace all the functions defined in the module sim code, which implements
the clone detection algorithm.

Percept2 sets up the trace and profiling facilities to listen for the traced events. It then stores these
events to the file: sim code.dat. Alternatively, we could use the following command to have multiple
data files to store the trace data:

percept2:profile({"sim_code", wrap, ".dat", 20000000, 10},
{sim_code,sim_code_detection,
[["./test"], 3, 40, 2, 4, 0.8, [], 8]},
[sim_code]).

In the latter case, Percept2 stores trace events to files: sim code0.dat, sim code1.dat, etc. The
actual run of the profiling command would generate 4 data files: i.e. sim code0.dat, sim code1.dat,
sim code2.dat and sim code3.dat.

The profiling will go on for the whole duration until the function sim code:sim code detection/8
returns and the profiling has concluded.

4.2.2 Analysing

To analyze the data files generated, we use the function percept2:analyze/3, which takes a list of
data file names as input. This function parses the data files in parallel, and inserts all events into a
RAM database. To analyse the trace data from the previous example, we run the following command:

(test@hl-lt)2> percept2:analyze(["sim_code0.dat", "sim_code1.dat",
"sim_code2.dat", "sim_code3.dat"]).

Parsing: "sim_code0.dat"
Parsing: "sim_code1.dat"
Parsing: "sim_code2.dat"
Parsing: "sim_code3.dat"

ICT-287510 (RELEASE) 23rd October 2012 12

Parsed 83686 entries from "sim_code0.dat" in 7.191 s.
Parsed 129217 entries from "sim_code1.dat" in 9.064 s.
Parsed 25927 entries from "sim_code3.dat" in 10.78 s.
Parsed 128830 entries from "sim_code2.dat" in 10.796001 s.
Consolidating...
356 created processes.
97 opened ports.
ok

4.2.3 Data viewing

To view the data, start the web-server with percept2:start webserver/1 with a specific port
number as the argument as shown next, or with percept2:start webserver/0 in which case an
available port number will be assigned by inets. This command returns the hostname and a port where
we should direct the web browser.

(test@hl-lt)3> percept2:start_webserver(8888).
{started,"hl-lt",8888}

Figure 6: Percept2: menu page

As with Percept, we can now open a web-browser, and go to localhost with the port number
returned; then we should be able to see the menu page of Percept2, as shown in Fig 6.

Same as Percept, clicking on the overview button in the menu will direct to the concurrency
graph page as shown in Fig 7. Again, we can zoom in on different areas of the graph either using the
mouse to select an area or by specifying min and max ranges in the edit boxes.

Selecting schedulers from the droplist option next to the update button will lead to the sched-
uler activity graph page. The scheduler activity graph shows the number of active schedulers at any
time during the profiling, as shown in Fig 8.

As in Percept, clicking on the processes button in the menu bar will direct us to the processes
view. Different from Percept, Percept2 shows the processes in an expandable/collapsible tree structure,
as shown in Fig 9. A number of new process information items were added in Percept2:

� the column #RQ chgs shows the number of times a process migrated between run-queues during
the profiling. The actual migration history from one run queue to another is available from the
process info information, which can be directed to by clicking on the process id;

ICT-287510 (RELEASE) 23rd October 2012 13

Figure 7: Percept2: concurrency overview

Figure 8: Percept2: scheduler graph

Figure 9: Percept2: process page (1)

ICT-287510 (RELEASE) 23rd October 2012 14

� the column #msgs received shows the number of messages received by a process (the first
element of the tuple), as well as the average size of all these messages received (the second
element of the tuple);

� similarly, the column #msgs sent shows the number of messages sent by a process, as well as
the average size of all these messages sent.

Figure 10: Percept2: process page (2)

Fig 10 shows the process tree when the + sign next to the Pid <0.23.0> is clicked. This snapshot
shows that 51 processes were spawned by process <0.23.0>. In this case, all the 51 processes have
the same entry point. Instead of listing all these 51 processes, Percept2 only shows information about
one process, <0.2413.0> in this case, and all the remaining process are compressed into one single
dummy processes. Only unregistered processes with the same parent and the same entry function can
be compressed, and if this happens, the values of ‘#RQ chgs’, ‘#msgs received’ and ‘#msgs sent’
are the sum of all the processes represented by the dummy process.

Figure 11: Percept2: process tree

If we click on the ‘Visualise Process Tree’ link at the bottom of the table, a graph representation of
all the process trees listed in the table will be shown as in Fig 11. Currently, the linkage relationships
between parent/children processes are not reflected, but will be added in the future. Note that Percept2
use the dot command from Graphviz to generate the graph visualisation, so make sure that Graphviz
works on your machine.

If functions are traced for a process, and those functions form a callgraph, then a ‘show callgraph/-
time’ link is shown in the Callgraph column of the process table; otherwise ‘no callgraph/time’ is shown.

ICT-287510 (RELEASE) 23rd October 2012 15

Figure 12: Percept2: function callgraph

Fig 12 shows the callgraph/time page of the process <0.2398.0>. In the callgraph shown, the edge
label indicates how many times a function is called by its calling function during the profiling. Note that
only functions that are actually traced are included in the callgraph, i.e. a function that is not traced
is not included in the callgraph even if this function is called during the execution of the application.

Figure 13: Percept2: function calltime

Underneath the callgraph is a table, as shown in Fig 13, indicating the accumulated time in each
function traced.

Function names shown in the accumulated calltime table are click-able, and clicking on a function
name will direct us to the information page for this function. Fig 14 shows the information about the
function sim code:sim code detection/4 executed by process <0.2398.0>.

Slightly different to Percept, Percept2 separates the display of ports information from that of pro-
cesses. To get a more detailed description about ports, select the ports view by clicking on the ports

ICT-287510 (RELEASE) 23rd October 2012 16

Figure 14: Percept2: function information page

Figure 15: Percept2: ports information page

ICT-287510 (RELEASE) 23rd October 2012 17

button in the menu. Information about the lifetime, parent process pid, etc, are shown in the table, as
shown in Fig 15.

If functions are traced, clicking on the ‘function activities’ button in the main menu will direct to a
page showing the functions that are active during the time interval selected. A time interval is selected
from the overview page either by selecting an area along the time line, or by specifying min and max
ranges in the edit boxes, and then pressing the update button. The default time interval is the whole
profiling period.

Figure 16: Percept2: function activities

As shown in Fig 16, the function activities table shows how the lifetime of an active function overlaps
with the time interval selected. In the activity bar, the green part shows the time interval selected,
light green shows the overlapping between the function’s lifetime and the time interval selected. The
grey part means that the function is active, but the time is out of the time interval selected.

Percept2 provides limited support for tracing distributed nodes so far, but one thing Percept2 can
report is the message passing activities between nodes. The tracing of inter-node communication can
be set up using Erlang’s ttb/inviso library. Once the trace data has been collected, the trace files can
be passed to Percept2, which will then analyze the data and extract those message passing activities
between nodes.

Figure 17: Percept2: inter-node messaging interface

When multiple nodes have been profiled, clicking on the ‘inter-node messaging ’ button in the menu
will direct us to a page like the snapshot shown in Fig 17. From this page, we can select the two nodes
that we are interested, Node1 and Node2 say, and click on the Generate Graph button, then Percept2
will generate a graph showing the message passing activities from Node1 to Node2 as shown in Fig 18.
The X-axis of the graph represents the time line, and the Y-axis of the graph represents the size of the
message sent.

5 Using DTrace/SystemTap

5.1 Technical issues

As DTrace/SystemTap were considered to be important for RELEASE from the early stages of the
project, an effort was made early on to overcome technical difficulties and provide practical guidelines

ICT-287510 (RELEASE) 23rd October 2012 18

Figure 18: Percept2: inter-node messaging

that would allow their use by project members as easily as possible. DTrace runs primarily on Oracle
Solaris, Mac OS X and FreeBSD. However, Solaris and FreeBSD are not very popular operating systems
today and, although Mac OS X has a quite fat share in the market of desktops and laptops manufactured
by Apple, it is not applicable to server machines with large numbers of cores that are of interest in the
context of RELEASE. Therefore, we early turned our attention to Linux and SystemTap.

For the proper use of SystemTap on a system running Linux, two things are necessary: (i) the
kernel needs to have debug information, and (ii) the kernel needs to have tracing support enabled
(CONFIG UTRACE). With the exception of very few Linux distributions (most notably, Fedora Core),
the latter can be achieved by a special kernel patch (UTRACE). We have made available patched kernels
(2.6.32) for the amd64 architecture and for GNU Debian Linux; such kernels have been installed and
tested on various sites of RELEASE, mainly in Athens and Uppsala. The UTRACE kernel patch will
no more be necessary when the Linux kernels used by mainstream distributions advance to 3.5.x, where
UTRACE has been replaced by Uprobes, an alternative which is considered cleaner and is supposed to
collaborate smoothly with DTrace/SystemTap.

5.2 Experimental tools

In order to get familiar with the DTrace/SystemTap profiling infrastructure, we initially tried to collect
information about the sizes of the run queues of the available schedulers during the execution of an
Erlang program, and to measure how often process migration takes place. To do this, we had to insert
new probes in the Erlang VM. We then wrote DTrace and a SystemTap scripts (there are some minor
syntactic differences between the languages used by these two tools, which are of little interest for this
report) to inspect changes in the run queue sizes during a program’s lifetime.

For this work, we focused on the following events: creation of a run queue, process enqueue/dequeue,
process migration; thus, we track changes to run queues when the relevant probes fire (e.g., in case of
SystemTap, those probes are: run queue create, run queue enqueue, run queue dequeue,
process migrate) and log them to a file at a constant interval (e.g., every second). Then, we
process the log file with a few awk scripts and use gnuplot to visualize the results. Two examples of
the figures that we are able to generate with these scripts are shown in Figures 19 and 20.

This was just done as an experiment of what kind of information we can get by using some of
the available VM probes, by introducing new probes, and with a simple visualizer using the gnuplot
utility. Then, our work focused on integrating DTrace/SystemTap as a back-end for collecting profiling
data in percept2.

ICT-287510 (RELEASE) 23rd October 2012 19

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

R
un

 Q
ue

ue
 S

iz
e

Run Queues

Run Queue 0
Run Queue 1
Run Queue 2
Run Queue 3
Run Queue 4
Run Queue 5
Run Queue 6
Run Queue 7

Figure 19: A simple graph of the changes in run queue size running bang with 8 schedulers

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

Run Queues

RunQueue0
RunQueue1
RunQueue2
RunQueue3
RunQueue4
RunQueue5
RunQueue6
RunQueue7
RunQueue8
RunQueue9
RunQueue10
RunQueue11
RunQueue12
RunQueue13
RunQueue14
RunQueue15

Figure 20: A stacked variable-height bar graph of the size of the run queues running bang with 16
schedulers

ICT-287510 (RELEASE) 23rd October 2012 20

Figure 21: DTrace/SystemTap Percept

5.3 DTrace/SystemTap Percept

In this section we present the work we have done so far for designing and implementing a new back-end
for Percept that uses DTrace or SystemTap in order to collect trace information, instead of the Erlang
built-in tracing functions that the existing back-end of Percept uses.

Our main goal, when designing the DTrace/SystemTap back-end, was to try to re-use as much as
possible from the existing infrastructure of Percept, both for saving effort and for compatibility reasons.
In comparison with the existing back-end of Percept, the new back-end uses:

� a different mechanism for collecting information about Erlang programs,

� a different format for the trace file it produces,

� a different parser for parsing the trace file,

� the same storage infrastructure, and

� the same presentation facilities.

An overview of Percept after the addition of the new back-end is shown in Figure 21.

5.3.1 DTrace/SystemTap Percept by example

This section presents an example of how to use both the existing and the new back-end of Percept, in
order to run an Erlang program and collect tracing information about it.

The scenario we are going to execute in both cases is the following:

� Start profiling

� Execute some piece of code

� Stop profiling

� Write all trace information that has been collected in a file

� View trace information

In order to implement this scenario using the existing back-end of Percept, we need to execute the
following commands:

ICT-287510 (RELEASE) 23rd October 2012 21

1> percept:profile("percept.dat").
Starting profiling.
{ok,#Port<0.657>}
2> bang:bang(10,10).
ok
3> bang:bang(20,20).
ok
4> percept_profile:stop().
ok

To analyze the collected information, we use the command:

1> percept:analyze("percept.dat").
Parsing: "percept.dat"
Parsed 876 entries in 0.019469 s.
Consolidating...
37 created processes.
0 opened ports.
ok

Finally, we use the command:

1> percept:start_webserver().
{started,"greedy",58141}

to start a web server. To view the data, we just need to direct a web browser to the hostname and port
that the above command returned.

In order to execute the same scenario using the new DTrace/SystemTap back-end of Percept, we first
need to execute the DTrace/SystemTap script that is responsible for collecting the trace information
(in the form of fired DTrace probes):

dtrace dtrace-percept.d > dtrace_percept.dat

or

stap dtrace-percept.stap > dtrace_percept.dat

and redirect its output in the file, where we want all trace information to be written.
For the purposes of the new back-end, we specified a new DTrace probe that is fired at the exact

same locations in the Erlang/OTP code, where trace information that Percept uses is collected.

probe percept__trace(char *)

The only argument of the new probe is a piece of trace information in the external term format.
After we have started the appropriate script, we can run the code we want to profile:

erl -noshell - eval "bang:bang(10,10). bang:bang(20,20)." -s init stop

Once the execution of the code has finished, we stop the DTrace or SystemTap script. All the
necessary trace information should now be available in the trace file, where we redirected the script’s
output.

In order to parse and analyze this trace file, we need to execute the following command:

1> percept:d_analyze("dtrace_percept.dat").

ICT-287510 (RELEASE) 23rd October 2012 22

percept:d analyze/1 is a function that is similar to the existing percept:analyze/1 function:
it parses the given trace file and inserts all trace information into an ETS table. The trace file is
essentially a number of Erlang terms in the external term format separated with dots. Thus, the
parsing phase uses the file:consult/1 and the erlang:binary to term/1 functions.

In order to inspect the collected data, we use the percept:start webserver/0 function, as we
did before.

6 Other Contributions

6.1 Sampling-based profiling

Complement to Percept2, we have also implemented a collection of functions for reporting informa-
tion regarding memory usage, garbage collection, scheduler utilization, and message/run queue length,
etc. This is done by sampling-based profiling, i.e. the profiler probes the running Erlang system
at regular intervals. Sampling profiling is typically less numerically accurate and specific, but has
less impact on the system. Data collected by the profiler are stored in files, and the gnuplot tool
can be used for graph visualisation of the data. The following Erlang functions are used for the
purpose of data collection erlang:statistics/1, erlang:memory/1, erlang:system info/1
and erlang:process info/1. The interface functions for invoking the sampling-based profiling are
percept2:sample/3,4,5 and percept2:sample/4 and percept2:sample/5.

The following types of information can be collected:

� Total run queue length: the sum length of all run queues, that is, the total number of processes
that are ready to run.

� Length per run queue: the length of each run queue, that is, the number of processes that are
ready to run in each run queue.

� Scheduler utilisation: the scheduler-utilisation rate per scheduler.

� Schedulers online: the amount of schedulers online.

� Process count: the number of processes currently existing at the local node.

� Memory information: information about memory dynamically allocated by the Erlang emulator.
Information about the following memory types is collected: processes, ets, atom, code and binary.

� The number of messages currently in the message queue of a particular process.

Profiling data is formatted in the way so that the graph plotting tool Gnuplot can be used for
visualisation. A pre-defined plotting script is available for each type of information collected, and these
scripts are in the gplt directory user percept2. For more information about how to run the profiling
and how to visualise the profiling data using Gnuplot, please refer to the Percept2 documentation.

6.2 Experimental extensions to the Erlang built-in trace

One of the factors that limit the scalability of tracing/profiling tools is the vast amount of data gener-
ated/collected, hence reducing the data generated/collected could potentially improved the scalability
of tracing/profiling tool. For this purpose, we have carried out a couple of experimental extensions to
the Erlang built-in trace. More details follow.

ICT-287510 (RELEASE) 23rd October 2012 23

6.2.1 Message size vs. message

The current Erlang built-in tracing logs the complete messages sent/received by traced processes when
the send/receive flags are on. While message content may be useful for some cases, it could also increase
the size of trace data collected significantly, especially when large messages are sent between processes,
or there are frequent message passing between processes.

We have extended the built-in trace with a flag to be used in conjunction with the send/receive
trace flags, so that the size of the message, instead of the actual message, is logged when this flag is on.

6.2.2 Dynamic trace data filtering

Erlang’s built-in tracing provides powerful support for controlling the function call events to traced
by means of match specification. A match specification consists of an Erlang term describing a small
program that expresses a condition to be matched over a set of arguments. When tracing is concerned,
match specifications are used to deal with the filtering and manipulation of trace events. If they
match successfully, a trace event is generated and some predefined actions can be executed. Match
specifications are compiled to a format close to the one used by emulator, making them more efficient
than functions.

While match specifications can be used to filter out function call related trace events, they are not
applicable to other trace events, but this does not mean that there is no such a need for dynamic
filtering/manipulating other trace event, actually quite the contrary.

To support dynamic filtering of non-function related trace events, we proposed to allow users to
use match specifications to match general trace messages, and filter out those events not of interest.
For this purpose, we have experimentally implemented a new Erlang BIF: erlang:trace filter/2,
which has the following type specification:

erlang:trace_filter(PidSpec, MatchSpec)->integer()>=0.

Types:
PidSpec = pid() |existing | new | all
MatchSpec = true | false | [match_specification()]
match_spec(): see the ERTS User’s Guide for a description of

match specifications.

erlang:trace filter/2 works like this: for all the trace events for the process or processes
represented by PidSpec, the trace message is matched over the match specifications specified by
MatchSpec, and a trace event is logged only if the match succeeds. Setting MatchSpec to true does
not filter out any trace messages, and setting it to false will filter out all the trace messages, i.e. no
trace messages for the processes specified will be recorded.

7 Future plans

In the second year of the project we will be developing tools for support of online monitoring and
visualisation of SD Erlang programs, while at the same time enhancing the offline monitoring tools
presented here. In particular we plan to explore

� Enhancing Percept2 so that it acts as a single front end for the results of both Erlang trace and
DTrace/SystemTap.

� To include further support for distribution in Percept2.

� Explicitly to support the constructs of SD Erlang in offline and online visualisation.

ICT-287510 (RELEASE) 23rd October 2012 24

� To work with experts in the field of data visualisation from the University of Kent’s Computational
Intelligence research group to develop innovative approaches to HTML5 for web-based graphical
visualisation.

8 Conclusions

This report describes the first deliverable in the fifth work package of the RELEASE project, and delivers
a number of tools and mechanisms supporting the offline visualisation of SD Erlang many/multicore
systems.

References

[Arm10] J. Armstrong. Erlang. Commun. ACM, 53:68–75, 2010.

[Bul08] G. Bulmer. Erlang-DTrace. Presented at the Erlang User Conference, November 2008.

[cpr] cprof - A simple Call Count Profiling Tool. http://www.erlang.org/doc/man/cprof.
html.

[CT09] F. Cesarini and S. Thompson. Erlang Programming: A Concurrent Approach to Software
Development. O’Reilly Media Inc., 1st edition, 2009.

[dbg] dbg - The Text Based Trace Facility. http://www.erlang.org/doc/man/dbg.html.

[epr] eprof - A Time Profiling Tool for Erlang. http://www.erlang.org/doc/man/eprof.
html.

[et] ET - The Event Tracer. http://www.erlang.org/doc/man/et.html.

[eto] ETop - The Erlang Top. http://www.erlang.org/doc/man/etop.html.

[fpr] fprof - An Erlang File Trace Profiler. http://www.erlang.org/doc/man/fprof.html.

[Fri11] S. L. Fritchie. DTrace and Erlang: A new beginning. Presented at the Erlang User Conference,
November 2011.

[GM11] B. Gregg and J. Mauro. DTrace: Dynamic Tracing in Oracle Solaris, Mac OS X, and
FreeBSD. Prentice Hall, 2011.

[lcn] lcnt - A runtime system Lock Profiling tool. http://www.erlang.org/doc/man/lcnt.
html.

[per] Percept - An Erlang Concurrency Profiling Tool. http://www.erlang.org/doc/man/
percept.html.

[pma] pman - A Graphic Process Manager. http://www.erlang.org/doc/man/pman.html.

[ttb] TTB - The Trace Tool Builder. http://www.erlang.org/doc/man/ttb.html.

