
ICT-287510
RELEASE

A High-Level Paradigm for Reliable Large-Scale Server Software
A Specific Targeted Research Project (STReP)

D4.2 (WP4): Homogeneous Cluster Infrastructure

Due date of deliverable: 30th June 2012
Actual submission date: 16th July 2012

Start date of project: 1st October 2011 Duration: 36 months

Lead contractor: Erlang Solutions Ltd. Revision: 1.1

Purpose: To build and describe a framework that enables automatic deployment of an Erlang/OTP
application into a given number of Erlang nodes running in a homogeneous cloud environment.

Results:

• We developed a Command Line Interface (CLI) which can be used to automatically deploy a
given Distributed Erlang Application into a set of N machines running in the Amazon EC2 cloud
environment

• We have run EC2 clusters of Erlang nodes within a secure environment, by using the Amazon
Virtual Private Cloud (VPC) functionalities.

Conclusion: The approach we propose to automate deployment of an Erlang OTP application into
a homogeneous cloud environment worked smoothly. We now face two major challenges, which will be
tackled as part of the next deliverables: moving from a homogeneous environment to a heterogeneous
one and adding cluster control and monitoring functionalities to the framework.

Project funded under the European Community Framework 7 Programme (2011-14)
Dissemination Level

PU Public >
PP Restricted to other programme participants (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential only for members of the consortium (including the Commission Services)

ICT-287510 (RELEASE) 2nd August 2012 1

Homogeneous Cluster Infrastructure

Roberto Aloi <roberto.aloi@erlang-solutions.com>
Torben Hoffmann <torben.hoffmann@erlang-solutions.com>

Contents

1 Executive Summary 3

2 Introduction 3

3 A Scalable Virtualization Infrastructure 4

4 CCL /sIsIlI/ 5

5 Implementation 6
5.1 Amazon VPC . 6
5.2 erlcloud . 6
5.3 Road to a cluster of Erlang Nodes . 6
5.4 Amazon VPC Limitations . 8

6 Automatic Deployment 8
6.1 Installation . 9
6.2 Execution of user-defined commands . 10
6.3 Cluster Configuration . 11
6.4 Automatic Failover and Takeover Strategies . 11
6.5 Starting the application . 12
6.6 cloud-init Limitations . 12

7 Future Work 12
7.1 Leveraging the current architecture . 12
7.2 Planned Features . 12
7.3 Moving Towards a Heterogeneous World . 13

8 Conclusions 13

A The CCL Configuration File 15

B Moebius: Continuous Integration as a Service 16
B.1 The Moebius Architecture . 16

B.1.1 Frontend . 16
B.1.2 Database . 17
B.1.3 Backend (Master) . 18
B.1.4 Agent . 19

ICT-287510 (RELEASE) 2nd August 2012 2

B.2 Current Feature Set . 19
B.3 Moebius vs Travis CI . 22

ICT-287510 (RELEASE) 2nd August 2012 3

Abstract

The main objective of this deliverable (D4.2) is to provide an infrastructure which, given a
Distributed Erlang Application[1] AppX, allows the user to automatically deploy the application
into a fully-connected cluster of N Erlang nodes running in a homogeneous cloud environment.
For the sake of this deliverable, we assume that the Erlang Application uses the Erlang Distribution
Protocol[4] as the main mean of communication between the Erlang nodes composing the cluster. We
initially focus our attention uniquely on Erlang Applications built following the OTP principles and
conventions[6] and based on the rebar [20] building tool. We utilize the Amazon EC2 web service[12]
as the Cloud Service Provider for our homogeneous infrastructure.

This deliverable represents the first step towards a more generic broker layer capable of creating,
managing and dynamically scaling heterogeneous clusters of Erlang nodes, based on capability profile
matching, as pictured in the WP4 section of the Release project.

1 Executive Summary

The Statement of Aims for our Scalable Virtualization Infrastructure (SVI) is to help build, test, deploy
and operate distributed scalable systems written in Erlang. This serves the needs of development teams
building scalable systems and allows companies to improve their time-to-market, quality, customer
engagement and overall development flow.

According to our original plan, we wanted to cover all the four stages of a systems life-cycle through
our SVI: development, testing, deployment and operations. Therefore, we started developing Moebius,
a tool aimed at providing large-scale Continuous Integration (CI) as a service. The simultaneous raise
of Travis CI as the standard de-facto for CI as a service convinced us to slightly modify our original
plan and to focus on the deployment and operations aspects of a scalable system. We decided to name
our new infrastructure Cloud Computing Lace (in short, CCL /sIsIlI/).

As the first step towards a fully-functional Scalable Virtualization Infrastructure, we decided to
design and build a tool which eases automatic deployment of an Erlang/OTP application into a given
number of Erlang nodes running within a homogeneous cloud environment. We developed a Command
Line Interface (CLI) which can be used to deploy and configure a given Distributed Erlang Application
into a set of N machines running in the Amazon EC2 cloud environment. To ensure that the EC2
clusters of Erlang nodes run within a secure environment, we utilized the Amazon Virtual Private
Cloud (VPC) functionalities. To interact with the Amazon Web Services (AWS), we used a modified
version of the erlcloud libraries. The CLI offers several commands to the user who can, among the
other things, execute bulk commands on the Erlang nodes composing the cluster or configure takeover
and failover strategies.

Our approach to automate deployment of an Erlang OTP application into a homogeneous cloud
environment worked smoothly. We now face two major challenges, which will be tackled as part of the
next deliverables: moving from a homogeneous environment to a heterogeneous one and adding cluster
control and monitoring functionalities to the framework.

2 Introduction

Deliverable D4.2 is part of the Work Package WP4 of the Release project. The Work Package, titled
Scalable Virtualization Infrastructure, is aimed at providing a broker layer capable of creating, managing
and dynamically scaling heterogeneous clusters, based on capability profile matching. More specifically,
deliverable D4.2 focuses on homogeneous environments, as opposed to the heterogeneous environments
that will be analyzed as part of deliverable D4.3. It also assumes a static configuration for the cluster
(e.g. in terms of nodes composing the cluster), rather than relying on a dynamic, capability-driven
approach which will be considered during deliverable D4.4.

ICT-287510 (RELEASE) 2nd August 2012 4

Figure 1: Scalable Systems

While working on the deliverable, involvement of project partners has been extremely precious.
Worth to mention is the collaboration - mostly happened in the form of remote brain-storming sessions
-, with the team from Heriot-Watt University. The collaboration mainly regarded the usage of s-groups
within our Scalable Virtualization Infrastructure. During the meeting in St. Andrews (Scotland),
progresses and future plans about WP4 and the SVI have been presented to the Release partners, who
provided invaluable feedback and revealed available for further collaborations.

3 A Scalable Virtualization Infrastructure

The Statement of Aims for the Scalable Virtualization Infrastructure discussed in WP4 is to help build,
test, deploy and operate distributed scalable systems written in Erlang. Our Scalable Virtualization
infrastructure aims at servicing the needs of development teams building scalable systems, allowing
companies to improve their time-to-market, quality, customer engagement and overall development
flow.

In figure 1 we list the four main stages of a system’s life-cycle. Being able to build scalable systems
implies that the required tools and flows are in place for all of the listed stages:

1. Development

2. Testing

3. Deployment

4. Operations

According to our original plan, we wanted to cover all the four stages of a system’s life-cycle through
our Scalable Virtualization Infrastructure. Therefore, we started developing Moebius, a tool aimed at

ICT-287510 (RELEASE) 2nd August 2012 5

Figure 2: A Scalable Virtualization Infrastructure

large-scale Continuous Integration, where the main idea was to serve Continuous Integration as a
service. Unfortunately (or fortunately) the simultaneous raise of Travis CI1[7] as the standard de-facto
for Continuous Integration (CI) as a service convinced us to slightly modify our original plan and to
focus on the deployment and operations aspects of a scalable system. For more details about Moebius,
its architecture and the current status of its development and for more information on how Moebius
relates to Travis CI, please refer to Appendix B.

4 CCL /sIsIlI/

We decided to name our Scalable Virtualization Infrastructure CCL, pronounced /sIsIlI/, which stands
for Cloud Computing Lace.2

CCL represents a layer which sits on the top of both Erlang and OTP, enabling the developer to build
its distributed Erlang application without pain. When dealing with distributed applications, Erlang
assists the developer at language level, providing programming paradigms and syntactical structures.
OTP does the same, but it acts at a node level, with its libraries and patterns (i.e. behaviours). CCL
tries to jump to an even higher level, allowing the developer to deploy his distributed applications and
to manage clusters in a twist. Please note that, when we refer to a distributed application, we always
assume to talk about a Distributed Erlang application, built according to the OTP[6] principles and
conventions and based on the rebar [20] building tool.

1Travis CI is a hosted continuous integration service for open source projects. It supports Ruby, PHP, Python, Java,
Node.js, and many more.

2Despite of the official acronym, CCL also refers to Aristophanes’ play The Birds. During the play, the two major
characters attempt to erect “a perfect city in the clouds”, to be named “Cloud Cuckoo Land”. That story didn’t end too
well and the characters were mutated into birds. We hope the same doesn’t happen to us.

ICT-287510 (RELEASE) 2nd August 2012 6

5 Implementation

5.1 Amazon VPC

The native Erlang Distribution mechanism has been entirely designed to run within trusted environ-
ments. The authentication model used is trivial and based on a shared secret, better known as the
Erlang cookie. Erlang nodes exchange messages using mere TCP/IP sockets. All these reasons make
the use of the Erlang Distribution mechanism unsafe in a cloud environment such as the Amazon EC2
one, where an Erlang cluster could be subjected to a variety of attacks, including forgery, interception
and tampering of Erlang messages[19]. Even if several attempts have been conducted in the past decade
to secure distributed communication in Erlang[9], none of these reached that level of maturity required
by a production system. This is why we needed a way to isolate our cluster of Erlang nodes in a corner
of the Amazon EC2 cloud.

Fortunately for us, Amazon has recently introduced a new important feature for its EC2 Web
Service: Amazon Virtual Private Cloud (Amazon VPC), a tool which lets you provision a private,
isolated section of the Amazon Web Services (AWS) Cloud where you can launch AWS resources in
a virtual network that you define. With Amazon VPC, you can define a virtual network topology
that closely resembles a traditional network that you might operate in your own datacenter. You have
complete control over your virtual networking environment, including selection of your own IP address
range, creation of subnets, and configuration of route tables and network gateways. Additionally, you
can create a Hardware Virtual Private Network (VPN) connection between your corporate datacenter
and your VPC and leverage the AWS cloud as an extension of your corporate datacenter[10]. This
seemed exactly what we needed for our Erlang Scalable Virtualization Infrastructure.

Figure 3 shows an example of VPC (1), which is an isolate portion of the AWS cloud. The VPC is
connected to the Internet and to other AWS resources via an Internet Gateway(2). The VPC contains
a Subnet, which is a segment of a VPC’s IP address range. Subnets enable you to group instances based
on your security and operational needs. Routing Tables and Routing Rules, represented by R in figure,
enable traffic to flow between the Subnet and the Internet (4), while Security Groups (5)3 control the
inbound and outbound traffic. (6) represents an instance running inside the VPC. In addition to their
private address, instances may have an Elastic Public IP Address assigned (7).

5.2 erlcloud

Sadly, the introduction of the Amazon VPC service was so recent that there were no Erlang libraries
to interact with it at the moment of this writing. We therefore decided to use erlcloud, a popular open
source Cloud Computing Library for Erlang[17], as a basis for our needs and to extend it to support
the Amazon VPC functionalities. We’ve then contributed to the erlcloud project with about 500 lines
of code, implementing a good section of the Amazon VPC APIs. Our changes are currently kept on a
separate fork of the project, given that we focused only on those APIs which were strictly relevant to
our use case, but we plan to complete the full set of VPC APIs and to push our contributions back to
the original fork of the project very soon.

5.3 Road to a cluster of Erlang Nodes

The first step towards the programmatical creation of a cluster of Erlang nodes was to spawn a set of
Amazon instances running inside the same VPC. This involved the following steps:

1. Sign up for Amazon VPC

3VPC Security Groups are more powerful than standard EC2 Security Group, since they offer some extra functionalities
and more granular control. For an analysis on how VPC Security Groups compare to EC2 Security Groups, please refer
to [14].

ICT-287510 (RELEASE) 2nd August 2012 7

Figure 3: Amazon VPC

2. Set Up a VPC and an Internet Gateway

3. Set Up a Security Group

4. Launch one or more instances in the VPC

5. Assign an Elastic IP Address to one or more instances

Assuming that the user already owns a valid Amazon VPC Account, all the above steps can be
achieved using CCL via the following one-liner instruction:

rel/ccl_cli/bin/ccl deploy --config my.config

All the information required for the deployment, such as the Amazon EC2 credentials for the user,
the Amazon Image Id (AMI) and the dimension of the cluster can be specified in a configuration file
(my.config in the above example). Let’s consider the following configuration extract, which would be
sufficient to spawn a cluster of two Erlang nodes within a newly created Virtual Private Cloud.

ICT-287510 (RELEASE) 2nd August 2012 8

Figure 4: Creating a VPC in 5 steps

%% -*- Erlang -*-

%% EC2 Account Information

{ec2_hostname, "ec2.eu-west-1.amazonaws.com"}.

{ec2_accesskey, "YOUR_EC2_ACCESS_KEY"}.

{ec2_secretkey, "YOUR_EC2_SECRET_KEY"}.

{ec2_ami, "ami-123456"}.

%% CCL Configuration

{ccl_clustersize, 2}.

The above command, together with the given configuration, would produce an output resembling
the following.

[...]

15:07:27.620 [info] ===> VPC created ("vpc-18282b71")

15:07:27.976 [info] ===> Subnet created ("subnet-1f282b76")

15:07:28.134 [info] ===> Internet Gateway created ("igw-10282b79")

15:07:28.299 [info] ===> Internet Gateway ("igw-10282b79") attached to VPC ("vpc-18282b71")

15:07:28.458 [info] ===> Route Table created ("rtb-12282b7b")

15:07:29.094 [info] ===> Security Group created ("sg-b5110fd9")

15:07:29.280 [info] ===> SSH Access allowed ("sg-b5110fd9")

15:07:29.896 [info] ===> Starting Instances (["i-7500643d","i-7700643f"])

15:08:22.372 [info] ===> Instance Created ("i-7500643d", "176.34.141.142").

15:08:31.479 [info] ===> Instance Created ("i-7700643f", "176.34.141.144").

[...]

Please refert to Appendix A for a list of all the available CCL configuration options.

5.4 Amazon VPC Limitations

Amazon Virtual Private Clouds come at no extra cost, exception made from when you need to setup
VPNs to connect multiple VPCs. Nonetheless, there are some limitations regarding Amazon VPCs one
should be aware of. We list the limitations in table 1. It is possible to request Amazon to increase most
of these limits using the Amazon VPC Limits form[11]. Such limits need to be carefully considered at
design time.

6 Automatic Deployment

In software engineering, the term deployment refers to all of those activities which are required to make
a software system available for use. According to our vision, most of these activities are mechanical
and repetitive and they leave room to a good level of automation. This is particularly true for an

ICT-287510 (RELEASE) 2nd August 2012 9

Component Limit Comments

Number of VPCs per region 5

Number of subnets per VPC 20

Number of Internet gateways per region 5 One per VPC

Number of virtual private gateways per region 5 One per VPC

Number of customer gateways per region 50

Number of VPN connections per region 50 Ten per virtual private gateway

Number of route tables per VPC 10 Including the main route table

Number of entries per route table 20

Number of VPC Elastic IP addresses per AWS
account

5 You have one limit for VPC Elastic IP ad-
dresses (5) and another for standard EC2 ad-
dresses (5)

Number of VPC security groups per VPC 50

Number of rules per VPC security group 50

Number of VPC security groups a VPC in-
stance can be in

5

Number of network ACLs per VPC 10

Number of rules per network ACL 20

Number of BGP Advertised Routes per VPN
Connection

100

Table 1: Amazon VPC Limitations

Erlang OTP Distributed application. Table 2 summarizes the steps required to deploy an Erlang OTP
Distributed Application onto a target machine. It also highlights the parameters required to automate
each of these steps.

Step Parameter(s)

Install required Erlang version in the target machine Erlang Version Number

Copy the source code to the target machine URL for the source code

Build the application on the target machine Build steps

Configure cluster Number of machines composing the cluster

Start the application on the target machine Command(s) required to start the application

Table 2: Deployment steps and parameters

6.1 Installation

We provide to the final user a set of Amazon Machine Images (AMIs) which are pre-provisioned with
an Erlang stack. This reliefs the user from having to manually install Erlang on the machines4. We
then allow installation and configuration of a custom Erlang OTP application dynamically, at instance
launch time. This is done exploiting the Amazon’s Instance Metadata Service.

Amazon provides an Instance Metadata Service that can be accessed locally on the instance once it is
running to access instance-specific metadata as well as data supplied when launching the instance (also
known as user data)[13]. We send all the information required to fetch the code of the user application
(the fetch url) and to build it (the build steps) via the UserData field. Canonical’s cloud-init [16] package

4In future releases, we plan to give users the ability to customize the Erlang runtime system, in terms of building
options[5], emulator flags, standard flags and plain arguments[2].

ICT-287510 (RELEASE) 2nd August 2012 10

is then used to handle early initialization of the cloud instances using the UserData arguments. The
interactions between the user, the UserData field and the cloud-init package are reported in figure 5.

Figure 5: Automatic deployment of an Erlang OTP Application in CCL.

Instructions to build a specific Erlang/OTP application can be specified by the user via the CCL
configuration file, in the form of a list of shell commands. We call these instructions build steps5.
Using the same configuration file, the user also specifies the information (e.g. the GitHub credentials)
required to access the repository hosting the source code for the application. All of these information
are combined together by CCL and sent to the instance at launch time via the UserData field, in the
form of an executable shell script. This file is automatically executed within the instance by the cloud-
init script. cloud-init ensures that the script is executed only once, during the very first launch time.
The source code for the application is automatically pulled from GitHub and built on the instance.
The process is replicated for each of the machines composing the cluster.6.

6.2 Execution of user-defined commands

CCL provides an execute command to run a shell command on each of the machines composing the
cluster7.

rel/ccl_cli/bin/ccl execute COMMAND

5Build steps are executed in parallel on each of the machines composing the cluster, whilst sequentiality is ensured
within the context of the same machine.

6In future releases of CCL, we might introduce some form of caching for source tarballs (e.g. to avoid downloading
multiple copies of the same package).

7Please note that, at this stage, we do not forward the output generated by user-executed commands to the client, so
you might want to redirect the output (both stdout and stderr) to a file in the filesystem while executing commands on
the hosts. This will simplify debugging, should things fail.

ICT-287510 (RELEASE) 2nd August 2012 11

6.3 Cluster Configuration

After deploying an Erlang OTP application to a set of remote machines, you want to interconnect the
machines - or actually the Erlang nodes running on those machines - together. In Erlang/OTP, this is
typically achieved by connecting each of the nodes with the same node (e.g. the first one). The fact that
Erlang connections between nodes are, by default, transitive does the rest. Say that you have a set of
three nodes, A, B and C. You can simply connect B to A and C to A to obtain a fully-connected cluster
of Erlang nodes. For example, to configure a riak cluster, you might want to execute the following
command:

rel/ccl_cli/bin/ccl execute "rel/riak/bin/riak-admin cluster join riak@{{first}}"

The mustache-like[18] syntax allows you to parametrize commands. The {{first}} part will expand
to the IP address of the first (in a sorted list) node of the cluster8.

6.4 Automatic Failover and Takeover Strategies

In a distributed system with several Erlang nodes, resources might go down for a limited or extended
period of time. OTP allows the developer to setup failover and takeover strategies for when this happens,
so that applications can be “moved” from failing machines to working machines[3]. These strategies
are typically achieved by manually configuring the kernel application for each of the nodes composing
the cluster[8]. When dealing with cloud service providers, an extra level of difficulty is added, since
some of the required information to setup the failover and takeover strategies, such as the IP addresses
of the machines composing the cluster, may not be known at deployment time. Moreover, manual
configuration of a huge numbers of machines is indeed a tedious and error-prone process. Failover and
takeover strategies can be specified using the CCL configuration file:

{ccl_failovernodename, "NODE_NAME"}.

{ccl_failovernodes, BACKUP_NODES}.

NODE NAME represents the name of the Erlang node (without the host) which will run on each
of the machines composing the cluster, whilst BACKUP NODES is the number of backup nodes we
would like to have in our cluster.

Assume you want to deploy your application my app to a cluster of three machines and you want
one machine acting as the master node and two machines acting as backup nodes. You can achieve this
with the following setup:

{ccl_clustersize, 3}.

{ccl_failovernodename, "my_app"}.

{ccl_failovernodes, 2}.

CCL will take care of configuring the kernel application for you on each of the machines the
application was deployed to. The configuration for the master node might look something like:

[...]

{kernel,[{distributed,[{my_app,5000,

[’my_app@10.0.0.188’,

{’my_app@10.0.0.189’,’my_app@10.0.0.187’}]}]},

{sync_nodes_mandatory,[’my_app@10.0.0.189’,’my_app@10.0.0.187’]},

8During deployment, configuration files (e.g. vm.args or vars.config) are scanned for occurrences of 127.0.0.1, which
are replaced with the actual hosts values.

ICT-287510 (RELEASE) 2nd August 2012 12

{sync_nodes_optional,[]},

{sync_nodes_timeout,30000}]}

[...]

Where my app@10.0.0.188 represents the master node and my app@10.0.0.189 and my app@10.0.0.187
are the two backup nodes.

6.5 Starting the application

You can use the execute command (see section 6.2) to generate an Erlang release and to start an Erlang
application.

rel/ccl_cli/bin/ccl execute "./rebar generate"

rel/ccl_cli/bin/ccl execute "rel/my_app/bin/my_app start"

6.6 cloud-init Limitations

There are two important limitations about using cloud-init for the installation and configuration of
an Erlang Application on a EC2 instance. In fact, the cloud-init executable script is passed to the
instance via the Amazon EC2 UserData field, which has a maximum dimension of 16Kbytes. Also, the
UserData are immutable by definition.

A possibility to overcome both limitations is not to pass the build steps and the other required
configuration parameters directly via the UserData field, but to pass the location where the real data
is kept, for example, using the Amazon S3 storage service. This way one could make changes to the
configuration without having to change the location of the configuration. Please note that the Amazon
S3 service allows creation of buckets which are accessible only from a specific VPC, which fits our
scenario perfectly.

7 Future Work

7.1 Leveraging the current architecture

At the moment, the communication with the Erlang nodes running in the cluster happens through a
tiny software layer which, acting as an abstraction over SSH, allows the user to distribute commands
to the EC2 instances and to the respective Erlang nodes. From an EC2 instance perspective, this is
translated into a couple of pre-installed shell scripts triggered by CCL. We plan to move from the current
architecture to one where an esl-core application runs on each of the EC2 instances (probably on a
secondary, hidden Erlang node). Esl-core would represent an Operations and Maintenance application,
decoupled from the user-application running on the main Erlang node, but offering some API, in case
the user would like to rely on some of its features at run-time. We devise to implement a riak-core[21]
application as the first esl-core prototype.

7.2 Planned Features

We have a huge list of features which we would love to add to the CCL framework in the next few
months:

• Simplified upgrades

• Automatic Dimensioning

• Automatic Scaling

ICT-287510 (RELEASE) 2nd August 2012 13

• Enhanced Monitoring

• Tools and Patterns

• Advanced Clustering

Let’s see them in detail.
Simplified upgrades. After you deploy an Erlang/OTP application to a cluster of Erlang nodes,

you might want to upgrade them to a newer version. This could happen because you discovered a bug
in your current implementation or simply because you wanted to add a new feature to it. Erlang/OTP
already offers mechanisms, such as code replacement and release handling which simplify the task. CCL
would leverage that, automating procedures and minimizing down time.

Automatic Dimensioning. What are the requirements for your Erlang application in terms of
Erlang nodes, memory or storage? What kind of Amazon EC2 instances do you need to avoid your
application to be overloaded? How can you avoid over-expending by renting resources you do not
actually need? CCL should be able to help you saving money and time, by automatically selecting the
best option to your needs.

Automatic Scaling. It is not always possible to estimate exactly the amount of resources required
by an Erlang application. CCL Auto-Scaling, built on the top of Amazon EC2 AutoScaling, would
allow you to scale the capacity of your Erlang application up or down, according to conditions you
define.

Enhanced Monitoring. Monitoring a cluster of Erlang nodes is crucial to keep a system healthy
and balanced. Overloaded and failing nodes should be easy to identify and traffic should be kept
uniform across the cluster.

Tools and Patterns. Erlang Solutions has a great knowledge in terms of libraries, tools, patterns
and architectures. Load balancers, logging systems, tunnelling and queing applications - to name a few
- should be easy to setup and configure using CCL.

Advanced clustering. For a big number of Erlang nodes, the Erlang philosophy and the concept
of transitive connections between Erlang nodes can be problematic, since a fully-connected graph of
Erlang nodes could be too chatty, therefore reducing throughput and efficiency. To overcome this
limitation, a technique is being currently developed as part of the Release project. According to this
strategy, Erlang nodes would be grouped in sets of nodes, known as s-groups (or Scalable Groups).
Groups would have transitive connection within the same group, but non-transitive connections with
other groups, allowing the overhead due to inter-node communcation to be heavily reduced. We are
evaluating the possibility to support such an experimental feature by making it available for CCL users.

7.3 Moving Towards a Heterogeneous World

As you might have already realized, the current implementation of CCL is strictly tightened to the
Amazon EC2 Web Services offering. The major challenge in the next phase (deliverable D4.3) will be
to move away from this assumption and to support clusters which are non necessarily Amazon-based.
For this reason, we are looking at the OpenStack [15] software.

8 Conclusions

Our approach to automate deployment of an Erlang OTP application into a homogeneous cloud envi-
ronment such as the Amazon EC2 one have been pretty straightforward. Moving from an homogeneous
world to an heterogeneous reality represents a major challenge for us, given the intrinsic differences
charcterizing the different cloud providers and the difficulties of implementing a common cloud broker
which allows to use the providers’ services in a transparent way.

ICT-287510 (RELEASE) 2nd August 2012 14

We listed many features which we plan to add to the Scalable Virtualization Infrastructure, ranging
from simplified upgrades to automatic scaling. Implementing these feature will leverage our Scalable
Virtualization Infrastrucure, bringing it to the next level. This will allow companies who use the SVI
to improve their time-to-market, quality, customer engagement and overall development flow.

ICT-287510 (RELEASE) 2nd August 2012 15

A The CCL Configuration File

A sample CCL Configuration File follows, accompanied by a brief explaination for each of the listed
parameters.

%% -*- Erlang -*-

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% EC2 Account Information %%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

{ec2_hostname, "ec2.eu-west-1.amazonaws.com"}.

{ec2_accesskey, "YOUR_EC2_ACCESS_KEY"}.

{ec2_secretkey, "YOUR_EC2_SECRET_KEY"}.

{ec2_ami, "ami-123456"}.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Github Information %%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

{github_username, "prof3ta"}.

{github_repository, "m8ball"}.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% CCL Configuration %%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

{ccl_clustersize, 3}.

{ccl_failovernodename, "m8ball"}.

{ccl_failovernodes, 2}.

{ccl_buildsteps, ["./rebar compile",

"./rebar generate",

"rel/m8ball/bin/m8ball start"]}.

.

Option Description

ec2 hostname Endpoint for the Amazon EC2 Web Services

ec2 accesskey Alphanumeric text string that uniquely identifies your EC2 account

ec2 secretkey The password for your EC2 account

ec2 ami A special type of pre-configured operating system and virtual appli-
cation software which is used to create a virtual machine within the
Amazon Elastic Compute Cloud (EC2)

github username The GitHub account owning the application that you want to deploy

github repo The name of the GitHub repository that contains the application
that you want to deploy

ccl clustersize The number of machines composing the cluster

ccl failovernodename The name of your Erlang node (in case of automatic failover/takeover
strategies). Nodes running on different machines will have the same
name, but different hosts

ccl filovernodes The number of Erlang nodes acting as backup nodes (in case of au-
tomatic failover/takeover strategies)

ccl buildsteps List of shell commands which will be run during deployment

Table 3: The CCL Config File Parameters

ICT-287510 (RELEASE) 2nd August 2012 16

B Moebius: Continuous Integration as a Service

As already explained in the introduction, we originally wanted to cover all the four stages of a system’s
life-cycle through our Virtual Scalable Infrastructure. Therefore, we started developing Moebius, a tool
aimed at large-scale Continuous Integration, where the main idea was to serve Continuous Integration
as a service. In this appendix we outline the architecture, the current feature set and the development
status of Moebius.

B.1 The Moebius Architecture

Moebius has been designed as a distributed system composed of modular components. Each compo-
nent provides mostly generic APIs allowing other components to communicate with it. Moreover the
architecture is split into layers representing the different roles of components in the overall systems.
The following diagram depicts the layered architecture.

Figure 6: The Moebius Architecture

B.1.1 Frontend

The frontend layer is responsible for serving user requests through HTTP. Two content formats are
supported.

1. HTML for browsing via a web browser

2. JSON for programmatic access to data

Irrespectively of the chosen format, the system uses HTTP Basic authentication to identify and
authorize user requests. Each frontend node is a independent Erlang node, keeping a connection
to a single node in the Riak cluster to read, query and write data. Therefore no data is shared

ICT-287510 (RELEASE) 2nd August 2012 17

directly between frontend nodes. The following components are used by the Erlang nodes internally to
implement the aforementioned functionality:

• Mochiweb: serves HTTP requests

• Webmachine: provides abstraction around the HTTP state model

• ErlyDTL: rendering of HTML template files

Moreover the HTML content delivered to a web browser uses client-side rendering to allow the
dynamic update of content utilizing the JSON API without having to reload whole HTML pages. The
following libraries are used to facilitate the client-side rendering:

• Twitter Bootstrap: used for HTML layout styling

• JQuery : used for general Javascript functionality

• PureJS : used for client-side rendering

Figure 7: The Moebius Frontend

B.1.2 Database

All communication with Riak is encapsulated in a single component which exposes useful APIs such
that one doesn’t need to use the Riak client application directly. This component is used by both the
web front-end as well as the master. The component, named moebius db client, consists of 3 layers:

Models. Each model is represented as an Erlang record and a respective module which can be
used throughout the system to operate on the entity without directly accessing Riak. Most modules

ICT-287510 (RELEASE) 2nd August 2012 18

Figure 8: The Moebius Database

provide CRUD9 functionalities together with some more specialized API functions which are specific
to a certain entity. Almost all API functions have side-effects since they perform database operations
internally. All models use the database abstraction moebius db instead of the Riak client directly. All
model records are defined in moebius models.hrl.

DB Abstraction. The database abstraction moebius db implements common operations done in
Riak using default parameters where appropriate. Furthermore, it performs the marshalling and unmar-
shalling of entities using mdc json. All data is stored in JSON format in Riak, thus mdc json translates
Erlang records to JSON and vice-versa, transparently to the developer. Finally, the abstraction layer
provides a common, uniform error handling behaviour when accessing the database.

Riak client. The official Erlang Riak client application implements the communication protocol
and messaging with Riak. It is used directly only by the database abstraction.

B.1.3 Backend (Master)

The backend, also called master, co-ordinates all the work in the system10. Its main tasks are:

• project monitoring

• job coordination

• job execution

For each project which is hosted on the system, a project worker monitors its SCM repository for
changes. By default, the worker periodically polls the repository for changes. All workers are supervised

9Create, Read, Update and Delete.
10In the current implementation of Moebius, the master is represented by a single Erlang node. To avoid having a single

point of failure (SPOF) we were planning to convert it into a proper Erlang distributed application.

ICT-287510 (RELEASE) 2nd August 2012 19

Figure 9: The Moebius Backend (Master)

by a project manager which is merely responsible for cleanly restarting workers in the case of failures.
Whenever a change is detected for a project, the respective project worker creates a job worker which
is responsible for co-ordinating the activities for the job, acquiring resources as well as communicating
with agents. Each job worker spawns several job runners, one per platform. A job runner acquires an
assigned platform from moebius box then starts sending the job data to the respective agent. The agent
streams back all the results, such as logs and artifacts, which are stored in the database. Job runners
terminate on completion. Likewise, once all the job runners spawned by a job worker terminate, the
worker itself dies, thus all the processing in regard to the job is done.

B.1.4 Agent

The agent is a fairly trivial component which, deployed on a platform, exposes an HTTP API to the
master. The API endpoint is used to receive new jobs. These jobs are transformed into a internal data
format before they are sent to the job runner. The HTTP connection is kept open until the job runner
returns the job results, which are then streamed back to the original caller. After the job has finished
and all results are sent, the HTTP connection is closed.

B.2 Current Feature Set

User multi-tenancy

• allows many users to register and use the same instance of Moebius, independently from each
other

Project multi-tenancy

• allows many projects to be hosted on a single Moebius instance

ICT-287510 (RELEASE) 2nd August 2012 20

Figure 10: The Moebius Agent

• allows a user to manage many projects

Project Privacy

• a project can be public, thus e.g. test results can be seen by anybody, or private, only allowing
admin users to access results

User Signup

• a user can create an account through the web front-end

• signups can be disabled to prevent users from registering (useful for closed testing)

Multiple Infrastructure Provider Support

• Amazon EC2

• VirtualBox

• dedicated servers

Multiple Platform Support

• a project can be assigned to many platforms, allowing builds or tests to run simultaneously on
those

ICT-287510 (RELEASE) 2nd August 2012 21

Web Front-End

• allows users to manage projects as well as view results

Integrated Documentation

• the web front-end includes a documentation system

• user documentation is work in progress

Json API

• provides the same functionality as the web front-end for managing projects and retrieving results

• uses the same access control mechanisms as the web front-end

Artifact Storage

• users can define regular expressions to select generated files to be stored in the database

• users can retrieve stored artifacts

VCS Support

• projects using any of the supported VCSs can be managed via Moebius

• Git

• Subversion

3rd Party Integration

• event-based internal integration API allow rapid integration with other services

• Gerrit (beta) - builds or tests can be triggered by new Gerrit reviews, results will be posted as
comments to such reviews

Erlang-Independent Build/Test Commands

• can be any sequence of shell commands

Log Storage

• any output from builds/tests is stored and can be viewed by users later

Cloud Instance Instantiation

• creates new VM instances for each job and destroys these once a job has finished

• allows execution of many jobs in parallel

ICT-287510 (RELEASE) 2nd August 2012 22

Project Dependencies

• projects can depends on other projects

• (successfully) finished builds/tests can trigger jobs for dependent projects (e.g. a successful build
of Erlang/OTP can trigger a Riak build/test suite)

Puppet-based provisioning support for cloud instances

• allows the use of bare-bone VMs

• when a instance is launched it is provisioned using Puppet scripts provided by the user

• only available for VirtualBox as of now

B.3 Moebius vs Travis CI

While we were actively working on Moebius, a new little gem took shape in the open-source community:
Travis CI, a hosted Continuous Integration service for open source projects. Like Moebius, Travis
wanted to provide Continuous Integration as a Service to the final user, in a distributed fashion.
Like Moebius, Travis wanted to be integrated with GitHub. Travis CI has been crowd funded and
supported by some major sponsors. It soon became a super-set of Moebius, in terms of offered features.
The development effort which has been put on Travis by the open-source community made him reach a
stability and a level of maturity superior to the ones provided by Mobius. All of these reasons convinced
us to stop the development of Moebius, before it was too late.

Neverthless, we did not throw away all the job done with the project, but we have re-used as much
as possible from that experience, both in terms of acquired knowledge and actual code. Specifically,
the following Moebius’ Building Blocks have already been (or are going to be) migrated to the new
framework:

• Interaction with GitHub APIs

• Webmachine RESTFul APIs

• Building workflow

• Artifacts browsing

ICT-287510 (RELEASE) 2nd August 2012 23

References

[1] Ericsson AB. Distributed Erlang.
http://www.erlang.org/doc/reference_manual/distributed.html.

[2] Ericsson AB. erl: The Erlang Emulator.
http://www.erlang.org/doc/man/erl.html.

[3] Ericsson AB. Erlang Distributed Applications.
http://www.erlang.org/doc/design_principles/distributed_applications.html.

[4] Ericsson AB. Erlang Distribution Protocol.
http://www.erlang.org/doc/apps/erts/erl_dist_protocol.html.

[5] Ericsson AB. Installing Erlang.
https://github.com/erlang/otp/blob/maint/INSTALL.md.

[6] Logan at Al. Erlang and OTP in Action. Manning.

[7] Travis CI. Travis CI: Distributed build platform for the open source community.
http://travis-ci.org.

[8] Fred Hebert. Distributed OTP Applications.
http://learnyousomeerlang.com/distributed-otp-applications.

[9] Bertil Karlsson. Secure Distributed Communication in SafeErlang.
http://www.erlang.se/publications/xjobb/Secure_Dist_Comm_in_SafeErlang.pdf.

[10] Amazon Web Services LLC. Amazon Virtual Private Cloud.
http://aws.amazon.com/vpc/.

[11] Amazon Web Services LLC. Amazon VPC Limits Form.
http://aws.amazon.com/contact-us/vpc-request/.

[12] Amazon Web Services LLC. Amazon Web Services.
http://aws.amazon.com/.

[13] Amazon Web Services LLC. Bootstrapping Applications With AWS Cloud Formation.
https://s3.amazonaws.com/cloudformation-examples/BoostrappingApplicationsWithAWSCloudFormation.

pdf.

[14] Amazon Web Services LLC. VPC Security Groups.
http://docs.amazonwebservices.com/AmazonVPC/latest/UserGuide/VPC_SecurityGroups.

html.

[15] Openstack LLC. OpenStack: The Open Source Cloud Operating System.
http://openstack.org/software/.

[16] Canonical Ltd. Cloud Init.
https://help.ubuntu.com/community/CloudInit.

[17] Gleb Peregud. Erlcloud.
https://github.com/gleber/erlcloud.

[18] Tom Preston-Werner. Mustache for Erlang.
https://github.com/mojombo/mustache.erl.

ICT-287510 (RELEASE) 2nd August 2012 24

[19] Dave Smith. Securing Distributed Erlang.
http://dizzyd.com/sdist.pdf.

[20] Basho Technologies. Rebar.
https://github.com/basho/rebar.

[21] Basho Technologies. Where to Start with Riak-core.
http://basho.com/blog/technical/2011/04/12/Where-To-Start-With-Riak-Core/.

