IRELEASE

SEVENTH FRAMEWORK
PROGRAMME

ICT-287510

RELEASE

A High-Level Paradigm for Reliable Large-Scale Server Software
A Specific Targeted Research Project (STReP)

D2.4 (WP2): Robust Scalable Erlang Virtual Machine

Due date of deliverable: January 31, 2015
Actual submission date: ~ March 17, 2015

Start date of project: 1st October 2011 Duration: 36 months

Lead contractor: Uppsala University Revision: 0.1 (March 17, 2015)
Purpose: To describe additions and improvements made to key components of the Erlang Virtual
Machine that improve its robustness, scalability and responsiveness on big multicore machines.

Results: The main results presented in this deliverable are:
e Two new additions to the Erlang Virtual Machine (VM), namely a scheduler utilization bal-

ancing mechanism and the ability to interrupt long running garbage collecting BIF's, that
improve the responsiveness of the Erlang/OTP system.

e Changes to the memory carrier migration mechanism, a new super carrier memory allocation
scheme, and the new scheme for time management in the VM.

e A detailed description of the implementation of the Erlang Term Storage (ETS) and a study
of the scalability and performance improvements to ETS across Erlang/OTP releases.

e New designs for ETS’ implementation that improve its performance and scalability further.
e Scalable tracing support for profiling and monitoring SD Erlang applications.

e Scalability measurements of the VM improvements in Erlang/OTP releases during the project.

Conclusion: Additions and changes made during the RELEASE project have allowed many key
components of the Erlang runtime system to become more efficient and scalable and have eliminated
bottlenecks that previously hindered the scalability and responsiveness of its VM. Further improve-
ments are possible by incorporating into the Erlang/OTP distribution components that currently
exist in development branches of the system or in prototypes.

Project funded under the European Community Framework 7 Programme (2011-14)
Dissemination Level

PU | Public *

PP | Restricted to other programme participants (including the Commission Services)

RE | Restricted to a group specified by the consortium (including the Commission Services)

CO | Confidential only for members of the consortium (including the Commission Services)

ICT-287510 (RELEASE) March 17, 2015

Robust Scalable Erlang Virtual Machine

Konstantinos Sagonas <kostis@it.uu.se>
Sverker Eriksson <sverker.eriksson®@ericsson.com>
Rickard Green <rickard.s.green@ericsson.com>
David Klaftenegger <david.klaftenegger@it.uu.se>
Kenneth Lundin <kenneth.lundin@ericsson.com>
Nikolaos Papaspyrou <nickie@softlab.ntua.gr>
Katerina Roukounaki <arou@softlab.ntua.gr>
Kjell Winblad <kjell.winblad®@it.uu.se>

Contents
1 Introduction

2 Scalable Virtual Machine Architecture

2.1 Scheduler Utilization Balancing
2.2 Interruptible Garbage Collection
2.3 Changes to Carrier Migration oo
2.3.1 Searching the Pool o
2.3.2 Result and Further Work L.
2.4 Super Carrier e
2.4.1 Problems
2.4.2 Solution
2.5 Time Management L e
2.5.1 Time Retrievalo
2.5.2 Timer Wheel
2.5.3 BIF Timer e
2.5.4 Benchmarkso

3 Scalable Erlang Term Storage

3.1 Low-Level Implementation L ..
3.2 Improvements Between Erlang/OTP Releases
3.2.1 Support for Fine Grained Locking
3.2.2 Reader Groups for Increased Read Concurrency
3.2.3 More Refined Locking and More Reader Groups
3.3 Performance and Scalability Study
3.3.1 Scalability of Hash-Based ETS Tables Across OTP Releases
3.3.2 Effect of Tuning Options.,
3.4 Towards ETS with Even Better Scalability
3.4.1 Number of Bucket Locks
3.4.2 Contention Adapting Trees for Ordered Set ETS Tables
3.4.3 More Scalable Locking Libraries for ETS
3.4.4 More Scalable Alternatives to Meta Table Locking

w

O 1 7~ O Uttt

— =
o O

10

ICT-287510 (RELEASE) March 17, 2015

4 Scalable Tracing Support for Profiling and Monitoring
4.1 DTrace/SystemTap back-end for offline/online profiling and monitoring
4.2 DTrace probes for SD Erlang L o

5 Efficient Support for Benchmarking and Profiling Sim-Diasca
5.1 BenchErl e
5.2 Percept2

6 Scalability of the VM Across Erlang/OTP Releases
7 Concluding Remarks

A Virtual Machine Improvements in Erlang/OTP Releases
A.1 Improvements in Erlang/OTP R15B (2011-12-14)
A.2 TImprovements in Erlang/OTP R15B01 (2012-04-02)
A.3 Improvements in Erlang/OTP R15B02 (2012-09-03)
A4 Improvements in Erlang/OTP R15B03 (2012-12-06)
A5 Improvements in Erlang/OTP R16B (2013-02-25)
A.6 Improvements in Erlang/OTP R16B01 (2013-06-18)
A.7 TImprovements in Erlang/OTP R16B02 (2013-09-18)
A.8 Improvements in Erlang/OTP R16B03 (2013-12-09)
A9 Improvements in Erlang/OTP 17.0 (2014-04-07)
A.10 Improvements in Erlang/OTP 17.1 (2014-06-24)
A.11 Improvements in Erlang/OTP 17.3 (2014-09-17)
A.12 Improvements in Erlang/OTP 17.4 (2014-12-10)

24
24
26

27
27
27

28

28

ICT-287510 (RELEASE) March 17, 2015 3

Executive Summary

This document is the fourth and last deliverable of Work Package 2 (WP2) of the RELEASE
project. WP2 is concerned with improving the Erlang Virtual Machine (VM) by re-examining its
runtime system architecture, identifying possible bottlenecks that affect its performance, scalability
and responsiveness, designing and implementing improvements and changes to its components and,
whenever improvements without major changes are not possible, proposing alternative mechanisms
able to eliminate these bottlenecks. Towards this goal, we have gradually improved the implemen-
tation of several key components of the Erlang runtime system and complemented them with some
new components offering additional functionality. Many of these have been presented already in
Deliverables D2.2 and D2.3 and we will not repeat them here. In this document we describe addi-
tional components of the Erlang VM, additions and improvements to those described in D2.2 and
D2.3, a deeper investigation of the performance and scalability characteristics of the Erlang Term
Storage mechanism, and alternative data structures that further improve ETS’ scalability.
More specifically, in this report:

e We present two new additions to the Erlang VM that improve the responsiveness of the
Erlang/OTP system, namely a scheduler utilization balancing mechanism and the ability to
interrupt long running garbage collecting built-in functions. (These additions are already part
of the 17.x releases of Erlang/OTP.)

e We describe changes to the memory carrier migration mechanism presented in Deliverable 2.3,
a new super carrier memory allocation scheme, and the new scheme for time management in
the VM. (All these are scheduled to be included in the next major release of the system.)

e We perform a detailed study of the performance and scalability of ETS and the impact that
support for fine-grained locking, reader groups and the concurrency options had to ETS’
implementation.

e We propose alternative designs, based on contention adapting trees and queue delegation
locks, for improving the performance and scalability of the ETS implementation even further.

e We document the support for profiling and monitoring added to the probes of the VM that
allow it to profile SD Erlang applications.

e Finally, we include a selected set of scalability measurements showing the performance and
scalability impact that the various changes and new components of the Erlang VM described
in this and in previous deliverables of WP2 had to Erlang/OTP releases during the duration
of the RELEASE project.

1 Introduction

The main goal of the RELEASE project is to investigate extensions of the Erlang language and
improve aspects of its implementation technology in order to increase the performance of Erlang
applications and allow them to achieve better scalability when run on big multicores or clusters of
multicore machines. Work Package 2 (WP2) of RELEASE aims to improve the Erlang VM. The
lead site of WP2 is Uppsala University. The tasks of WP2 pertaining to this deliverable are:

Task 2.2: “... investigate alternative implementations of the Erlang Term Storage mechanism ...”

Task 2.3: “... investigate alternative runtime system architectures that reduce the need for copying
data sent as messages between processes and scheduler extensions that reduce inter-process
communication and support fine-grained parallelism.”

Task 2.4: “... design and implement lightweight infrastructure for profiling applications while these
applications are running and for maintaining performance information about them.”

ICT-287510 (RELEASE) March 17, 2015 4

Towards fulfilling these tasks, this fourth and last deliverable of WP2, presents new VM compo-
nents, additions and changes to existing ones described previously in Deliverables D2.2 and D2.3,
alternative designs for some others, and measures the scalability and performance benefits that all
these have brought to the Erlang VM and the various versions of the Erlang/OTP system released
during the duration of the project.

The remaining five sections describe these additions and changes in detail and, whenever ap-
propriate, present scalability and performance measurements that show their impact to the system.
Specifically, these sections describe:

e Two new additions to the Erlang Virtual Machine (VM), namely a scheduler utilization balanc-
ing mechanism and the ability to interrupt long running garbage collecting built-in functions,
that improve the responsiveness of the Erlang/OTP system. Also, changes to the memory
carrier migration mechanism, a new super carrier memory allocation scheme, and the new
scheme for time management in the VM.

e A detailed description of the implementation of ETS, a study of the scalability and perfor-
mance improvements to ETS across Erlang/OTP releases, and alternative designs, based on
contention adapting trees and queue delegation locks, for improving the performance and
scalability of the ETS implementation even further.

e Tracing support in VM probes for scalable profiling and monitoring of SD Erlang applications.

e The changes to BenchErl that were done to support the benchmarking and profiling of the
Sim-Diasca application.

e A selected set of scalability measurements of the VM improvements in Erlang/OTP releases
during the project.

The document ends with a brief section with some concluding remarks. The appendix lists changes
and scalability improvements which have made it into the Erlang/OTP system in one of its releases
during the duration of the RELEASE project.

The work for this deliverable has been done by researchers from Ericsson AB (EAB), the Institute
of Communication and Computer Systems (ICCS), and Uppsala University (UU). The breakdown
was the following;:

e the new components and changes to the Erlang VM described in Section 2 of this document
were done by the EAB team;

e the scalable tracing support for profiling and monitoring (Section 4) and the BenchErl changes
to support benchmarking and profiling of Sim-Diasca (Section 5) were done by the ICCS team;

e the scalability investigation, performance improvements, and alternative schemes for the im-
plementation of the Erlang Term Storage (Section 3) and the scalability benchmarking of
Erlang/OTP releases (Section 6) were performed by the UU team.

The rest of this document contains a detailed description of the above.

2 Scalable Virtual Machine Architecture

Throughout the RELEASE project, the Erlang Virtual Machine (VM) and its RunTime System
(ERTS) have been extended with a number of components that have either been developed from
scratch or re-designed to improve the scalability, reliability and responsiveness of the Erlang/OTP
system!. Deliverable D2.3 has presented most of them (Thread Progress, Delayed Deallocation,
Carrier Migration, Process and Port Tables, Process Management, Port Signals, Code Loading,

'The appendix contains a lengthy list of these components and the command-line options that control them.

ICT-287510 (RELEASE) March 17, 2015)

Trace Setting, and Term Sharing) in detail; we refer the interested reader to that document for
their description.

During the last year of RELEASE, there have been improvements and additions to these com-
ponents. For example, the algorithm of Carrier Migration has been redesigned, and some other VM
features (Scheduler Utilization Balancing, Interruptible Garbage Collection) are already part of the
Erlang/OTP distribution. Two more ERTS components (Super Carrier and Time Management)
have also been implemented and are scheduled to be part of the next major release (18.0) of the
Erlang/OTP system. This section will present the most important of these.

2.1 Scheduler Utilization Balancing

A new optional scheduler utilization balancing mechanism has been introduced in Erlang/OTP 17.0.
It can be enabled by the programmer via the +sub command-line option. By default scheduler
utilization balancing of load is disabled; instead scheduler compaction of load is enabled which will
strive for a load distribution which causes as many scheduler threads as possible to be fully loaded
(i.e., not run out of work). When scheduler utilization balancing is enabled (+sub true) the VM
will instead try to balance scheduler utilization between schedulers. That is, it will strive for equal
scheduler utilization on all schedulers.

Characteristic impact The scheduler utilization balancing mechanism has no performance im-
pact on the system when not enabled. When enabled, it results in changed timing in the system;
normally there is a small overhead due to measuring of utilization and calculating balancing informa-
tion. On some platforms, such as old Windows systems, the overhead can be quite substantial. This
time measurement overhead highly depends on the underlying primitives provided by the operating
System.

2.2 Interruptible Garbage Collection

A call to either the garbage_collect/1 or the check process_code/2 built-in function (BIF) may
trigger garbage collection of a different process than the process calling the BIF. The previous
implementations performed these kinds of garbage collections without considering the internal state
of the process being garbage collected. In order to be able to more easily and more efficiently
implement yielding native code, these types of garbage collections have been rewritten. A garbage
collection like this is now triggered by an asynchronous request signal, the actual garbage collection
is performed by the process being garbage collected itself, and finalized by a reply signal to the
process issuing the request. Using this approach processes can disable garbage collection and yield
without having to set up the heap in a state that can be garbage collected.

Additions and changes The garbage_collect/2 and check_process_code/3 BIFs have been
introduced. Both take an option list as last argument. Using these, one can issue asynchronous
requests. The code:purge/1 and code:soft_purge/1 BIFs have been rewritten to utilize asyn-
chronous check _process_code requests in order to parallelize work.

Characteristic impact A call to the garbage _collect/1 or the check process_code/2 BIF will
normally take longer time to complete. On the positive side, the system as a whole is not as much
negatively effected by the operation as before. A call to code:purge/1 and code:soft_purge/1
may complete faster or slower depending on the state of the system while the system as a whole is
not as much negatively effected by the operation as before.

2.3 Changes to Carrier Migration

As described in Deliverable D2.3, the ERTS memory allocators manage memory blocks in single-
block and multi-block chunks of raw memory, called raw memory carriers. A carrier is typically

ICT-287510 (RELEASE) March 17, 2015 6

created using mmap () on Unix systems. An allocator instance typically manages a mixture of single-
and multi-block carriers.

In order to migrate carriers between allocator instances we move them through a carrier pool.
In order for a carrier migration to complete, one scheduler needs to move the carrier into the pool,
and another scheduler needs to take the carrier out of the pool. The pool is implemented as a
lock-free, circular, doubly-linked list. The list contains a sentinel that is used as the starting point
when inserting to, or fetching from the pool. Carriers in the pool are elements in this list. How
migration of carriers between scheduler specific allocator instances of the same allocator type takes
place has been described in Deliverable D2.3. But this pool also needs to be searched for free blocks.

2.3.1 Searching the Pool

To preserve real-time characteristics, searching the pool is limited. We only inspect a limited number
of carriers. If none of those carriers has a free block large enough to satisfy the allocation request,
the search fails. A carrier in the pool can also be busy, if another thread is currently doing block
deallocation work on the carrier. A busy carrier will be skipped by the search as it can not satisfy
the request. As mentioned, the pool is lock-free and we do not want to block waiting for the other
thread to finish.

Before Erlang/OTP 17.4 When an allocator instance needs more carrier space, it always begins
by inspecting its own carriers that are waiting for thread progress before they can be deallocated. If
no such carrier is found, the allocator instance inspects the pool. If no carrier can be fetched from
the pool either, the allocator instance will allocate a new carrier. Regardless of where the allocator
instance gets the carrier from, it just links the carrier into its data structure of free blocks.

After Erlang/OTP 17.4 The old search algorithm had a problem as the search always started at
the same position in the pool, the sentinel. This could lead to contention from concurrent searching
processes. But even worse, it could lead to a “bad” state when searches fail with a high rate leading
to new carriers instead being allocated. These new carriers may later be inserted into the pool due
to bad utilization. If the frequency of insertions into the pool is higher than successful fetching from
the pool, memory will eventually get exhausted.

This “bad” state consists of a cluster of small and/or highly fragmented carriers located at the
sentinel in the pool. The largest free block in such a “bad” carrier is rather small, making it not able
to satisfy most allocation requests. As the search always started at the sentinel, any such “bad”
carriers that had been left in the pool would eventually form a bad cluster at the sentinel. Thus,
all searches first had to skip past this cluster of “bad” carriers to reach a “good” carrier. When the
cluster got to the same size as the search limit, the searches would essentially fail.

To counter the “bad cluster” problem and also ease the contention, the search now always starts
by first looking at the allocator’s own carriers. That is, it starts from carriers that were initially
created by the allocator itself and later had been abandoned to the pool. If none of the abandoned
carriers would do, then the search continues into the pool, as before, to look for carriers created by
other allocators. However, if there is at least one abandoned carrier of the allocator that could not
satisfy the request, we can use that as entry point into the pool.

The result is that we prefer carriers created by the thread itself, which is good for performance in
NUMA machines. And we get more entry points when searching the pool, which will ease contention
and clustering.

To do the first search among own carriers, every allocator instance has two new lists: pooled_1ist
and traitor_list. These lists are only accessed by the allocator itself and only contain the alloca-
tor’s own carriers. When an owned carrier is abandoned and put in the pool, it is also linked into
pooled_list. When we search our pooled_list and find a carrier that is no longer in the pool, we
move that carrier from pooled_list to traitor_list as it is now employed by another allocator.
If searching pooled_list fails, we also do a limited search of traitor_list. When finding an

ICT-287510 (RELEASE) March 17, 2015 7

abandoned carrier in traitor_list it is either employed, or moved back to pooled_list if it could
not satisfy the allocation request.

When searching pooled_list and traitor_list we always start at the point where the last
search ended. This to avoid clustering problems and increase the probability to find a “good”
carrier. As pooled_list and traitor_list are only accessed by the owning allocator instance,
they need no thread synchronization at all.

Furthermore, the search for own carriers that are scheduled for deallocation is now done as the
last search option. The idea is that it is better to reuse a poorly utilized carrier, than to resurrect
an empty carrier that was just about to be released back to the operating system.

2.3.2 Result and Further Work

The use of this strategy of abandoning carriers with poor utilization and reusing them in allocator
instances with an increased carrier demand is extremely effective and completely eliminates the
problems that otherwise sometimes occurred when CPU load dropped while memory load did not.

When using the aoffcaobf or aoff strategies compared to gf or bf, we lose some performance
since we get more modifications in the data structure of free blocks. This performance penalty
is however reduced using the aoffcbf strategy. A trade-off between memory consumption and
performance is however inevitable, and it is up to the user to decide what is most important.

As further work it would be quite easy to extend this to allow migration of multi-block car-
riers between all allocator types. More or less the only obstacle is maintenance of the statistics
information.

2.4 Super Carrier

A super carrier is large memory area, allocated at VM start, which can be used during runtime to
allocate normal carriers from.

The super carrier feature was introduced in OTP R16B03. It is enabled with command line
option +MMscs <size in MB> and can be configured with other options.

2.4.1 Problems

The initial motivation for this feature was Erlang/OTP customers asking for a way to pre-allocate
physical memory at VM start for it to use.

Other problems were some limitations experienced in the implementation of mmap in different
operating systems:

e Increasingly bad performance of mmap/munmap as the number of mmap’ed areas grows.

e Fragmentation problem between mmap’ed areas.

Finally, a third problem was management of low memory in the half-word emulator. The
implementation used a naive linear search structure to hold free segments which would lead to poor
performance when fragmentation increased.

2.4.2 Solution

Allocate one large continuous area of address space at VM start and then use that area to satisfy
our dynamic memory need during runtime. In other words: implement our own mmap.

Use cases If command line option +MMscrpm (Reserve Physical Memory) is set to false, only virtual
space is allocated for the super carrier from start. The super carrier then acts as an “alternative
mmap” implementation without changing the consumption of physical memory pages. Physical
pages will be reserved on demand when an allocation is done from the super carrier and be unreserved
when the memory is released back to the super carrier.

ICT-287510 (RELEASE) March 17, 2015 8

If +MMscrpm is set to true, which is default, the initial allocation will reserve physical memory for
the entire super carrier. This can be used by users who want to ensure a certain minimum amount
of physical memory for the VM.

However, what reservation of physical memory actually means highly depends on the operating
system, and how it is configured. For example, different memory overcommit settings on Linux
drastically change the behaviour.

A third feature is to have the super carrier limit the mazimum amount of memory used by the
VM. If +MMsco (Super Carrier Only) is set to true, which is default, allocations will only be done
from the super carrier. When the super carrier gets full, the VM will fail due to out of memory. If
+MMsco is false, allocations will use mmap directly if the super carrier is full.

Implementation The entire super carrier implementation is kept in erl mmap.c. The name
suggests that it can be viewed as Erlang’s own mmap implementation.

A super carrier needs to satisfy two slightly different kinds of allocation requests: multi block
carriers (MBC) and single block carriers (SBC). They are both rather large blocks of continuous
memory, but MBCs and SBCs have different demands on alignment and size.

SBCs can have arbitrary size and only need minimum 8-byte alignment.

MBCs are more restricted. They can only have a number of fixed sizes that are powers of 2.
The start address needs to have a very large alignment (currently 256 KB, called super alignment).
This is a design choice that allows very low overhead per allocated block in the MBC.

To reduce fragmentation within the super carrier, it is good to keep SBCs and MBCs apart.
MBCs with their uniform alignment and sizes can be packed very efficiently together. SBCs without
demand for alignment can also be allocated quite efficiently together. But mixing them can lead to
a lot of wasted memory when we need to create large holes of padding to the next alignment limit.

The super carrier thus contains two areas. One area for MBCs growing from the bottom and
up. And one area for SBCs growing from the top and down. Like a process with a heap and a stack
growing towards each other.

Data structures The MBC area is called sa (as in super aligned) and the SBC area is called sua
(as in super un-aligned). Note that the “super” in super alignment and the “super” in super carrier
have nothing to do with each other. Perhaps it would have been better if we had chosen different

name prefixes to avoid confusion, such as “meta” carrier or “giant” alignment.

R + <---- sua.top
| sua |

| |

[| <---- sua.bot
| |

| |

| |

[| <-—-- sa.top
| |

| sa |

| |

o + <---- sa.bot

When a carrier is deallocated a free memory segment will be created inside the corresponding
area, unless the carrier was at the very top (in sa) or bottom (in sua) in which case the area will
just shrink down or up.

We need to keep track of all the free segments in order to reuse them for new carrier allocations.
One initial idea was to use the same mechanism that is used to keep track of free blocks within
MBCs (alloc_util and the different strategies). However, that would not be as straight forward
as one can think and can also waste quite a lot of memory as it uses prepended block headers.

ICT-287510 (RELEASE) March 17, 2015 9

The granularity of the super carrier is one memory page (usually 4KB). We want to allocate and
free entire pages and we do not want to waste an entire page just to hold the block header of the
following pages.

Instead we store the meta information about all the free segments in a dedicated area apart from
the sa and sua areas. Every free segment is represented by a descriptor struct (ErtsFreeSegDesc).

typedef struct {

RBTNode snode; /* node in ’stree’ */
RBTNode anode; /* node in ’atree’ */
charx start;

char* end;

} ErtsFreeSegDesc;

To find the smallest free segment that will satisfy a carrier allocation (best fit), the free segments
are organized in a tree sorted by size (stree). We search in this tree at allocation. If no free segment
of sufficient size is found, the area (sa or sua) is instead expanded. If two or more free segments
with equal size exist, the one at lowest address is chosen for sa and highest address for sua.

At carrier deallocation, we want to coalesce with any adjacent free segments, to form one large
free segment. To do that, all free segments are also organized in a tree sorted in address order
(atree).

So, in total we keep four trees of free descriptors for the super carrier; two for sa and two for
sua. They all use the same red-black-tree implementation that supports the different sorting orders
used.

When allocating a new MBC we first search after a free segment in sa, then try to raise sa.top,
and then as a fallback try to search after a free segment in sua. When an MBC is allocated in
sua, a larger segment is allocated which is then trimmed to obtain the right alignment. Allocation
search for an SBC is done in reverse order. When an SBC is allocated in sa, the size is aligned up
to super aligned size.

The free descriptor area As mentioned above, the descriptors for the free segments are allocated
in a separate area. This area has a constant configurable size (+MMscrfsd) that defaults to 65536
descriptors. This should be more than enough in most cases. If the descriptors’ area fills up, new
descriptor areas will be allocated first directly from the OS, then from sua and sa in the super
carrier, and lastly from the memory segment itself which is being deallocated. Allocating free
descriptor areas from the super carrier is only a last resort, and should be avoided, as it creates
fragmentation.

Half-word emulator The half-word emulator uses the super carrier implementation to manage
its low memory mappings that are needed for all term storage. The super carrier can here not be
configured by command line options. One could imagine a second configurable instance of the super
carrier used by high memory allocation, but that has not been implemented.

2.5 Time Management

Time management in the virtual machine has recently become a major scalability bottleneck. This
as other more severe bottlenecks have been removed.

The main API for obtaining time information is erlang:now/0. It returns time since Epoch
with micro second resolution. We call this time Erlang system time. erlang:now/0 guarantees that
values returned are strictly increasing. This time is the basis for all time internally in the virtual
machine.

The Erlang system time should preferably align with the operating system’s view of time since
Epoch, i.e., OS system time. The OS system time can however be changed both forwards and back-
wards without limitation. The Erlang system time cannot be changed that way due to the guarantee

ICT-287510 (RELEASE) March 17, 2015 10

of returning strictly increasing values. The Erlang system time is therefore slowly adjusting towards
OS system time if they do not align.

One problem with the time adjustment made is that we on purpose present time with a faulty
frequency. Another problem is that the Erlang system time and OS system time can differ for very
long periods of time. In order to solve this, we now introduce a solution similar to what is used
on most operating systems. That is, a monotonic time that has its zero point at some unspecified
point in time. Monotonic time is not allowed to make leaps forwards and backwards while system
time is allowed to do this. The Erlang system time is just an offset from Erlang monotonic time.

2.5.1 Time Retrieval

Retrieval of the Erlang system time was previously protected by a global mutex which made the
operation thread safe, but scaled poorly.

The Erlang system time and Erlang monotonic time need to run at the same frequency, otherwise
the time offset between them would not be constant.

In the common case, monotonic time delivered by the operating system is solely based on a
machine local clock while the system time is NTP adjusted. That is, they will run with different
frequencies. Linux is an exception. It has a monotonic clock that is NTP adjusted and runs with
the same frequency as system time.

In order for Erlang monotonic time to run with the same frequency as the Erlang system time, we
need to adjust the frequency of the Erlang monotonic clock. This is done by comparing monotonic
time and system time delivered by the OS, and calculate an adjustment.

In order to be able to do this in a scalable way, one thread calculates the time adjustment to
use. If the adjustment needs to be changed, new adjustment information is published. This is done
at least once a minute.

When a thread needs to retrieve time, it reads the monotonic time delivered by the OS and the
time adjustment information previously published and calculates Erlang monotonic time.

It is important that all threads that read the same OS monotonic time map this to exactly
the same Erlang monotonic time, otherwise Erlang monotonic time would not be monotonic. In
order for this to be possible we need to synchronize the updates of the adjustment information.
This is done by use of a readers-writer (RW) lock. The RW lock is write-locked only when the
adjustment information is changed. This means that in the vast majority of cases the RW lock will
be read-locked, which allows multiple readers to run concurrently. In order to prevent cache-line
bouncing of the lock cache-line we use our own reader optimized RW lock implementation where
reader threads notify about their presence in separate cache-lines.

2.5.2 Timer Wheel

The timer wheel mechanism, which was described in detail in Deliverable 2.3, contains all timers set
by Erlang processes. The previous implementation was protected by a global mutex. This solution
of course scaled poorly. In order to alleviate this, each scheduler thread is assigned its own timer
wheel that is used by processes executing on the scheduler.

2.5.3 BIF Timer

The BIF timer implementation also was protected by a global mutex. Besides inserting timers
into the timer wheel the BIF timer implementation also has to take care of a mapping between a
reference that identifies the BIF timer and the actual timer in the timer wheel.

In order to get a scalable BIF timer solution we have implemented scheduler specific BIF timer
servers as Erlang processes. The BIF timer servers keep information about timers in private ETS
tables and only insert one timer at the time into the timer wheel.

ICT-287510 (RELEASE) March 17, 2015 11

2.5.4 Benchmarks

We have run two micro benchmarks on a dual 8-core AMD Opteron 4376 HE machine; i.e, the
machine has a total of 16 physical cores.

The first benchmark tests the cost of inserting timers in the timer wheel by sending messages to
processes that have a receive after clause and compares this with sending messages to processes
that do a receive without an after clause. When there is an after clause in a receive statement
a timer has to be set when the process blocks in the receive, and canceled when a message is
put into the message queue. When executing this benchmark using Erlang/OTP 17.4, the total
execution time when using timers is 62% longer than without timers. When running this benchmark
on a system with the above optimizations, the total execution time when using timers is only 5%
longer than without timers.

The second benchmark repeatedly checks the Erlang system time. When running on Erlang/OTP
17.4 this is done by calling erlang:now/0. When running on the optimized system this is done by
calling the new API functions erlang:monotonic_time/0 and erlang:time_offset/0 and adding
the result. The speedup when using the optimized system compared to Erlang/OTP 17.4 is more
than 6900%.

3 Scalable Erlang Term Storage

The Erlang Term Storage (ETS) is an important component of the Erlang runtime system, especially
when parallelism enters the picture, as it provides an area where processes can share data. It is
used internally by many of the Erlang/OTP libraries and it is the underlying infrastructure of main
memory databases such as mnesia. (In fact, every ETS table can be seen as a key-value store or an
in-memory database table.)

All ETS tables have a type: either set, bag, duplicate_bag or ordered_set. The set type does
not allow two elements in the table with the same key. The bag type allows more than one elements
with the same key but not more than one element with the same value. The duplicate_bag type
allows duplicate elements. Finally, the ordered_set type is semantically equivalent to the set
type, but allows traversal of the elements stored in the order specified by the keys. In addition,
it is possible to specify access rights on ETS tables. They can be private to an Erlang process,
protected i.e. readable by all processes but writable only by their owner, or public which means
readable and writable by all processes in an Erlang node. In this document we focus on ETS tables
that are shared between processes (i.e., public or protected).

When processor cores write or read to shared ETS tables, they need to synchronize to avoid
corrupting data or reading an inconsistent state. E'TS provides an interface to shared memory which
abstracts from the need of explicit synchronization, handling it internally. If a shared ETS table
is accessed in parallel from many cores at the same time, the performance of the application can
clearly be affected by how well the ETS implementation is able to handle parallel requests. Ideally,
we would like the time per operation to be independent of the number of parallel processes accessing
the ETS table. This goal is in practice not possible to achieve for operations that need to change
the same parts of the table. (However, it might be possible to accomplish it when parallel processes
access different parts of a table.) We measure the scalability of an ETS table as the amount of
parallel operations that can be performed on the table without getting a considerable slowdown in
time per operation.

3.1 Low-Level Implementation

The current implementation of ETS tables of type ordered_set is based on the AVL tree data
structure [1]. The other three types (set, bag and duplicate_bag) are based on the same linear
hash table implementation [9], their only difference being in how they handle duplicate keys and
duplicate entries. In the benchmarks presented in Section 3.3 we have selected the set type as
representative for all hash-based table types.

ICT-287510 (RELEASE) March 17, 2015 12

meta main
table

o[AVAVAY
d vUuy
i [VAVAVRY)
3l vUuvy

hash table

256 — T

S

..DD,DT .

257

AVL tree

258

256 locks
259

/

meta name
table

name | tab [name

id [name | tab atom2 atom3
| 0 |[atom1l| —1] \
a "
: hash table
a id |length [entries
| EET = VALY,
16Tocks v Jyuu\y

N TATATAY
o[VYUYV

Figure 1: ETS meta tables: In this example, there are three ETS tables. An unnamed table with
TID 0, and two named tables with TIDs 257 and 256. The tables with TIDs 0 and 256 use hashing,
while the table with TID 257 is based on an AVL tree. TIDs 0 and 256 use the same lock in the
meta main_table. This is not a problem here, as named tables are accessed through names instead
of TIDs. Tables atoml and atom2 use the same lock in meta name_table. This can be a bottleneck
if both tables are often accessed at the same time. As atom2 and atom3 hash to the same position
in the meta name_table, an additional list of tables in this bucket is used for them.

The following data structures are maintained on a node-wide level and are used for generic book-
keeping by the Erlang VM. Low-level operations, like finding the memory location of a particular
ETS table or handling transfers of ownership, use only these data structures. There are two meta
tables, the meta main table and the meta name table. They are depicted in Figure 1. Besides
these, there are mappings from process identifiers (PIDs) to tables they own and from PIDs to
tables that are fixated by them.

meta_main_table contains pointers to the main data structure of each table that exists in the
VM at any point during runtime. Table identifiers (TIDs) are used as indices into the
meta_main_table. To protect accesses to slots of this table, each slot is associated with a
reader-writer lock, stored in an array called meta main tab_locks. The size of this array is
set to 256. Its locks are used to ensure that no access to an ETS table is happening while
the ETS table is constructed or deallocated. Additionally the meta main table has one mu-
tual exclusion lock, which is used to prevent several threads from adding or deleting elements
from the meta main table at the same time. Synchronization of adding and removing ele-
ments from the meta_main_table is needed to ensure correctness in the presence of concurrent
creations of new tables.

ICT-287510 (RELEASE) March 17, 2015 13

meta_name_table is the corresponding table to meta main_table for named tables.

meta_pid_to_tab maps processes (PIDs) to the tables they own. This data structure is used when
a process exits to handle transfers of table ownership or table deletion.

meta_pid_to_fixed_tab maps processes (PIDs) to tables on which they called safe_fixtable/2.

Table locking ETS tables use readers-writer locks to protect accesses from reading data while
this data is modified. This allows accesses that only read to execute in parallel, while modifications
are serialized. Operations may also lock different sets of resources associated with a particular
operation on an ETS table:

e Creation and deletion of a table require acquisition of the meta main table lock as well as
the corresponding lock in the meta main tab_locks array.

e Creation, deletion and renaming of a named table also require acquisition of the meta name_table
lock and the corresponding lock in the meta name_tab_rwlocks array.

e Lookup and update operations on a table’s entries require the acquisition of the appropri-
ate lock within the ETS table as well as acquisition of the corresponding read lock in the
meta main_tab_locks or meta name_tab_rwlocks array. Without using any fine-tuning op-
tions, each table has just one readers-writer lock, used for all entries.

3.2 Improvements Between Erlang/OTP Releases

ETS support for scalable parallelism has evolved over time, both before the start of the RELEASE
project and, more importantly, during the project’s duration. Here we briefly describe the major
changes across Erlang/OTP releases.

Erlang/OTP got support for symmetric multiprocessing (SMP) in R11B. But not all runtime
system components came with scalable implementations at that point. We define fine grained
locking support in ETS tables as support for parallel updates of different parts of the table. In
Erlang/OTP R11B, no ETS table type had any support for fine grained locking. Instead, each
table was protected by a single reader-writer lock. As we will see, the scalability of the ETS
implementation in R11B was not so good.

3.2.1 Support for Fine Grained Locking

Optional fine grained locking of tables implemented using hashing (i.e. tables of types set, bag
and duplicate_bag) was introduced in Erlang/OTP R13B02-1. The fine grained locking could be
enabled by adding the term {write_concurrency,true} to the list of ets:new/2 options. A table
with fine grained locking enabled had one reader-writer lock for the whole table and an additional
array containing 16 reader-writer locks for the buckets. The bucket locks are mapped to buckets in
the way depicted in Figure 2. The mapping can be calculated efficiently by calculating bucket_index

modulo lock_array_size.

’ ~.
- s

Y
1
1
v

bucket locks array

a

’

s,
15w,

}///AA A"."“;./ v v y \“ A\\\
seckers |\ WU W U UY

Figure 2: Mapping of locks to buckets using an array of four locks.

ICT-287510 (RELEASE) March 17, 2015 14

With the additional bucket locks protecting the buckets, a write operation can happen in parallel
with other write and/or read operations. With write_concurrency enabled, an ets:insert/2
operation that inserts a single tuple will:

1. acquire the right meta table lock for reading;
acquire the table lock for reading;
release the meta table lock;

find the bucket where the tuple should be placed;

o

acquire the corresponding bucket lock for writing; and finally

6. insert the tuple into the bucket before releasing the bucket lock and the read table lock.

Read operations need to acquire both the table lock and the bucket lock for reading when the
option write_concurrency is enabled compared to just acquiring the table lock for reading when
this option was not available. Thus enabling this option can make scenarios with just read operations
slightly more expensive. Hence this option was not (and still is not) on by default.

Most operations that write more than one tuple in an atomic step, such as an ets:insert/2
operation inserting a list of tuples, acquire the table lock for writing, instead of taking all the needed
bucket locks. (Le., taking a single write lock was deemed more performing than taking many locks
which would likely lock large parts of the table anyway.)

3.2.2 Reader Groups for Increased Read Concurrency

All shared ETS tables have a table reader-writer lock. This is true even for tables with fine grained
locking, since many operations need exclusive access to the whole table. However, since all read
operations, and with fine grained locking even many common write operations (e.g. insert/2,
insert new/2, and delete/2) do not need exclusive access to the whole table, it is crucial that the
reader part of the lock is scalable.

In a reader-writer lock, a read acquisition has to be visible to writers, so they can wait for the
reads to finish before succeeding to take a write lock. One way to implement this is to have a
shared counter that is incremented and decremented atomically when reading threads are entering
and exiting their critical section. The shared counter approach works fine as long as the read
critical section is long enough. However, it does not scale very well on modern multicore systems
if the critical section is short, since the shared counter will entail a synchronization point. This
synchronization cost is significant, even on modern processors which have a special instruction for
incrementing a value atomically.

Figure 3 illustrates the problem of sharing a counter between several threads. The cache line
holding the counter needs to be transferred between the two cores because of the way modern
memory systems are constructed [11]. Transferring memory between private caches of cores is par-
ticularly expensive on Non-Uniform Memory Access (NUMA) systems, where cores can be located
on different chips, connected only by a slower interconnect with limited bandwidth. The reader
counter can instead be distributed over several memory words located in different cache lines. This
makes writing slightly more expensive, since a writer needs to check all reader counters, but reading
will scale much better.

Erlang/OTP R14B introduced the option read_concurrency that can be activated by specifying
{read_concurrency,true} in the list of ets:new/2 options when creating an ETS table. This
option enables so called reader groups for reader counters in the ETS tables’ reader-writer locks.
A reader group is a group of schedulers (possibly just one in every group) that indicate reading
by writing to a separate cache line for the group. Erlang scheduler threads are mapped to reader
groups so that the threads are distributed equally over the reader groups. The default number of
reader groups in Erlang/OTP R14B is 16, but can also be set as a runtime parameter to the VM.
A scheduler indicates a read by incrementing a counter in the memory area allocated for its reading

group.

ICT-287510 (RELEASE) March 17, 2015 15

core core core core

shared exclusive

— &~ . T e \ T

|
|
|
private cache privaﬁzﬁche | |private cache‘ private cache‘
I I | I I
|
|
|

shared memory shared memory

Figure 3: Illustration of cache line invalidation: When there is only a single counter (left, counter in
blue), it can only be written from one core efficiently. It is invalidated in all other cores’ caches on
update. Using multiple counters in separate cache lines (right, counters in blue and green) avoids
this problem. When used exclusively by one core, invalidation is unnecessary, so the counter stays
cached.

3.2.3 More Refined Locking and More Reader Groups

As mentioned in Section 3.2.1, the write_concurrency option enables fine grained locking for the
hash based tables. Before R16B the buckets in the hash table were divided between 16 buckets.
The size of the lock array was increased in Erlang/OTP R16B from 16 to 64 to give better scal-
ability on machines with many cores. The default number of reader groups was also increased in
Erlang/OTP R16B from 16, which was the previous default, to 64. We will evaluate the effect of
these two changes in Sections 3.3.2 and 3.4.1.

3.3 Performance and Scalability Study

Having described the implementation of ETS and its evolution, in this section we measure its
performance and scalability across different Erlang/OTP releases and quantify the effect that tuning
options have on the performance of ETS using the benchmark environment that we describe below.

Benchmark machine and runtime parameters All benchmarks were run on a machine with
four Intel(R) Xeon(R) E5-4650 CPUs (2.70GHz), eight cores each (i.e., a total of 32 cores, each
with hyperthreading, thus allowing the Erlang/OTP system to have up to 64 schedulers active
at the same time). The machine ran Linux 3.2.0-4-amd64 SMP Debian 3.2.35-2 x86_64 and had
128GB of RAM. For all benchmarks, the command line option +sbt tnnps was set, except when
not available in the Erlang/OTP release (i.e. it was not used in R11B-5 since it was introduced in a
later release). This option requests a thread pinning policy that spreads the scheduler threads over
hardware cores, but one NUMA node at a time. When cores can handle more than one thread in
hardware, the work is spread evenly among all cores before additional schedulers are bound to cores
that are already in use. So, benchmarks with up to eight schedulers were run on one NUMA node,
benchmarks with nine to sixteen schedulers were run on two NUMA nodes, and so on. Schedulers 33
through 64 are mapped to hyperthreads on cores already in use by another scheduler. This policy
tries to use the available computation power, while minimizing the communication cost between
the schedulers. For the compilation of the Erlang/OTP system, GCC version 4.7.2 (Debian 4.7.2-5)
was used.

Benchmark description For benchmarking we used bencherl, a benchmarking infrastructure for
measuring scalability of Erlang applications [3]. The benchmark we used is ets_bench, a benchmark
measuring distinct times for three phases: insertion, access and deletion. The benchmark is designed
to measure only those actions and no auxiliary work, like generating random numbers, or distributing
them among worker processes. It sets up an ETS table prior to measuring, using write_concurrency
and read_concurrency when the options are available in the Erlang/OTP release, unless specified
otherwise. All ETS operations use uniformly distributed random keys in the range [1..2097 152].
To make use of the available processing resources, the benchmark starts one worker process per

ICT-287510 (RELEASE) March 17, 2015 16

50 60

45 J

40 | 50 |

35 1 40 4

30 J

25 130 J

20 J

15 | 20]

10 A 1 10% |
70 0 10 20 30 40 50 60 70

(a) Workload with 90% lookups and 10% updates. (b) Workload with 99% lookups and 1% updates.

Figure 4: Scalability of ETS tables of type set across Erlang/OTP releases.

available scheduler, while the number of schedulers is varied by bencherl. First, the insertion phase
evenly distributes 1048576 keys to the workers, and measures the time it takes for them to insert
these keys into the table. To reduce the cost of coping memory, the tuples that we insert into the
table contains just one element (the key). Secondly, the access phase generates 16 777216 pairs
of keys and operations, where an operation is either a lookup, an insert, or a delete. To create
different scenarios of table usage, we varied the percentage of lookup vs. update operations in the
access phase; namely we created workloads with 90% and 99% lookups. For the remaining 10%
and 1% updates, the probability for inserts and deletes is always identical, so that the size of the
data structure should stay roughly the same. The measured runtime is only the time taken for this
second stage of the benchmark.

Information on the figures In all graphs of this section, the x-axis shows the number of runtime
schedulers and the y-axis shows runtime in seconds. To ensure that the benchmark results are
reliable, we run each benchmark three times. The data points in the graphs presented in the
following sections is the average runtime of these three runs. We also show the minimum and
maximum runtime for the three runs as a vertical line at each data point.

3.3.1 Scalability of Hash-Based ETS Tables Across OTP Releases

First, we measure scalability of the Erlang/OTP releases with major changes in the implementation
of ETS (R11B-5, R13B02-1, R14B, and R16B), for accessing tables of type set using the workloads
mentioned above. The results are shown in Figure 4.

As can be seen in Figure 4a, the scalability of ETS tables of type set improved significantly
starting with release R14B. As described in Section 3.2, the main change in this release was the
introduction of reader groups. However, the scalability difference between R13B02-1 and R14B is
unlikely to be caused by reader groups alone. Another important change between these two releases
is that the locks in the meta_main_tab_locks array was changed from using mutual exclusion locks
to reader-writer locks. In fact the reader-writer locks used for the meta table are of the new type
with reader groups enabled. Even though the meta table lock is just acquired for a very short
time in the benchmark (to read the meta main table), it is reasonable to believe, after looking at
Figure 4a, that doing this is enough to give unsatisfactory scalability.

The results for the workload workload with 99% lookups and 1% updates, shown in Figure 4b,
are very similar to those with 10% update operations. Compare them with those in Figure 4a.

3.3.2 Effect of Tuning Options

We have described the two ETS options write_concurrency and read_concurrency and the run-
time command line option +rg in Section 3.2. Here we report on their effectiveness by measuring

ICT-287510 (RELEASE) March 17, 2015 17

80 T T T T T T 40 T
—— set,no o —— set,no
i set,w 1 — set,w
70+ Sy set,r 4 35k set,r B
se%g\gd set o ?)?Efégedjet no
or g 0
60 |- "5~ ordered set 4 30187 ordere Tsetor 7
50 4 25 J
40 v * {20 1
30 4 15 J
20 4 10 J
10 % 1 5l ,
i ~ . gy 00
0 i —& T I i - | T I I L} [
0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70

(a) Workload with 90% lookups and 10% updates. (b) Workload with 99% lookups and 1% updates.

Figure 5: Scalability of ETS tables of type set when varying the concurrency options.

the performance effect for enabling vs. not enabling these options on the ets_bench benchmark run

on Erlang/OTP R16B.

Effect of concurrency options

ence the ETS data stuctures and locks is summarized in Table 1.

no r w ré& w

set lock type | normal freq_r freq.r freq_r

set bucket lock type - - normal freq.r
ordered_set lock type | normal freq.r mnormal freq_r

How options write_concurrency and read_concurrency influ-

Table 1: r denotes read_concurrency enabled, w denotes write_concurrency enabled, set lock type
and ordered_set lock type refer to the type of the lock, normal means the default reader-writer lock
without reader groups and freq_r means the reader-writer lock with the reader groups optimization.

Figure 5 shows the performance results. Recall that the x-axis shows the number of schedulers
and the y-axis shows runtime in seconds. On the workloads with a mix of lookups and updates, it
is clear that the only configurations that scale well are those with fine grained locking. Without
fine grained locking, read_concurrency alone is not able to achieve any improvement on mixed
workloads even when the percentage of updates is as low as 1%.

Interestingly, for tables of type set, there is no significant gain in using both read_concurrency
and write_concurrency compared to enabling just the write_concurrency option. On the other
hand, the memory requirements are increased with a significant constant when both options are
enabled compared to enabling just write_concurrency. With the default settings, a reader-writer
lock with reader groups enabled requires 64 cache lines (given that at least 64 schedulers are used).
Since there are 64 bucket locks in R16B and usually 64 bytes for a cache line that means at least
64 x 64 x 64 bytes (= 0.25 MB) for every table with both options are enabled.

Effect of reader groups (read_concurrency and +rg) To test the effect of the runtime system
parameter +rg, which is used to set the maximum number of reader groups, we ran the ets_bench
benchmark varying the number of reader groups. The default number of reader groups in R16B
is 64. The actual number of reader group is set to the minimum of the number of schedulers
and the value of the +rg parameter. The result of the benchmark is depicted in Figure 6. It is
very clear that just having one reader group is not sufficient. For the workloads measured in the
benchmark it seems like four or eight reader groups perform well. However, from 4 to 64 reader
groups performance varies very little for tables besed on hashing. It is worth noting that for this
kind of ETS tables, the lock acquisitions are distributed over 64 bucket locks. Therefore, none of
the bucket locks are likely to have many concurrent read and write accesses.

ICT-287510 (RELEASE) March 17, 2015 18

12 14
T T T T T 1R 1R
" ?1% et ?LE .
1 e
2 RG e 105 32 R —e— |
8L 4 R 64 R

0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70

(a) Workload with 90% lookups and 10% updates. (b) Workload with 99% lookups and 1% updates.

Figure 6: Scalability of ETS tables of type set when varying the number of reader groups.

It is worth noting that there are several reader-writer locks (that are affected by the +rg param-
eter) protecting different critical sections with different kinds of access patterns. For example, the
reader-writer locks protecting the meta main_table are expected to be very frequently acquired for
reading, while the reader-writer locks protecting the buckets in hash-based tables to be relatively
frequently acquired for writing. Finding a setting that works for most use cases will probably be
increasingly difficult as the number of cores grows. Theoretically, read only scenarios should benefit
from as many reader groups as the number of schedulers, while write only scenarios should benefit
from as few reader groups as possible.

3.4 Towards ETS with Even Better Scalability

In this section we present some ideas for extending or redesigning the ETS implementation in
order to achieve even better scalability than that currently offered by Erlang’s VM. These ideas
range from allowing more programmer control over the number of bucket locks in hash-based ta-
bles (Section 3.4.1), using contention-adapting trees to get better scalability for ETS tables of
type ordered_set (Section 3.4.2), using more scalable locking libraries (Section 3.4.3), to adopting
schemes for completely eliminating the locks in the meta table (Section 3.4.4).

3.4.1 Number of Bucket Locks

As mentioned in Section 3.2.3 the number of bucket locks for the hash-based ETS tables was
increased in Erlang/OTP R16B from 16 to 64. To understand how the number of bucket locks
affects performance, ets_bench was run with varying number of bucket locks. Currently, the number
of bucket locks can not be set by a runtime parameter, therefore a version of Erlang/OTP R16B was
compiled for each number of bucket locks tested. The benchmark was run with write_concurrency
and read_concurrency enabled.

Figure 7 shows the benchmark results for the two kinds of workloads we consider. A bigger
number of bucket locks has, unsurprisingly, a positive impact on scalability up to a certain point
where the positive effect wears off. The number of bucket locks for an ETS table should be decided
as a trade off between different factors:

1. how many schedulers the Erlang VM starts with;
2. how often and by how many processes the table is accessed;

3. what type of access is common for the table (for example, extremely read heavy tables do not
require as many bucket locks as extremely write intensive tables); and

4. the overhead of having more locks than required.

Since what is a good trade off depends on the application, our recommendation is to add support
for setting the number of bucket locks at runtime and per table in future Erlang/OTP releases.

ICT-287510 (RELEASE) March 17, 2015 19

80

70
60 |
50 |
40
30
20
10

0

0 10 20 30 40 50 60

(a) Workload with 90% lookups and 10% updates. (b) Workload with 99% lookups and 1% updates.

Figure 7: Effect of the number of bucket locks on a table of type set.

3.4.2 Contention Adapting Trees for Ordered Set ETS Tables

As mentioned, the current implementation of ETS tables of type ordered_set is based on the AVL
tree data structure. Every such shared table is protected by a single readers-writer lock which,
unsurprisingly, is a scalability bottleneck in situations where there are multiple writers to the table,
even when the percentage of write operations is very low (only 1% of the total table operations) [13].

To improve the scalability of ETS tables of type ordered_set we have proposed the use of
contention adapting search trees or CA trees for short. A CA tree [12] implements the abstract data
type ordered set and supports operations such as insert, delete and lookup as well as efficient ordered
traversal. The two main components of CA trees are mutual exclusion locks, which collect statistics
about how contended each lock is, and a sequential ordered set data structure that supports split
and join operations.

A brief description of CA trees A CA tree consists of routing nodes and base nodes. Routing
nodes contain a routing key, an ordinary mutex lock, a valid flag, one pointer for a left branch
and one pointer for a right branch. All keys in the left branch are smaller than the routing key
and all keys in the right branch are greater or equal to the routing key. A branch can either be
another routing node or a base node. The lock and the valid flag in a routing node are only needed
when adapting to low contention by joining trees, an operation which is expected to happen only
infrequently. A base node contains a statistics collecting lock that needs to be acquired to access
the rest of the data in the base node. Additionally, the base node contains a sequential ordered set
data structure and a valid flag.

Figure 8 depicts the structure of a CA tree. The oval
shapes are routing notes; the rectangular shapes are base
nodes, and the triangular shapes are sequential ordered
set data structures. Nodes marked with a valid symbol (a
green curve in the figure) are valid, while the node marked
with an invalid symbol is no longer in the tree. The search
for a key in the tree happens as in a normal binary search
tree. To access the content of a base node the statistics
lock in the base node needs to be acquired. After taking
the statistics lock the valid flag needs to be checked. If this
flag is set to invalid, the base node is no longer in the tree
and the operation needs to be retried from the tree’s root.

Adapting to high contention works by splitting a base
node into two base nodes that are linked together with a Figyre 8: The structure of a CA tree.
new routing node. Before unlocking the original base node,
the node needs to be marked invalid so that threads that have been waiting for the lock during the

ICT-287510 (RELEASE) March 17, 2015 20

split will see that they need to retry the operation.

Adapting to low contention is slightly more complicated than adapting to high contention. The
low contention adaptation works by joining two neighboring base nodes in the tree. One also has
to remove one routing node from the tree. To do this without risking to lose part of the tree, we
need to lock the parent of the base node that will be deleted as well as the grandparent (if the
grandparent is not the tree’s root). Similarly to the case when adaptation requires a split, both
joined base nodes need to be marked invalid before they are unlocked so that waiting threads will
retry the operation.

Integrating CA trees into the Erlang Runtime System Two variants of the CA tree have
been implemented and integrated into the Erlang VM as two new table types for testing purposes.
One of these variants uses the Treap data structure [2] as the sequential ordered set component and
the other one uses an AVL tree [1]. The implementation of the latter is based on the AVL tree code
currently used by the Erlang/OTP ETS implementation for ordered_set.

The CA tree integration is currently a prototype in the sense that it does not yet support the
full interface of ETS. The operations currently supported are insert, delete, and lookup. However,
extending the implementations to support the full ETS interface is quite easy [13]. For example, the
operations that operate on a single key can just be forwarded to the sequential data structure. In the
case of the CA tree implementation which is based on the AVL tree, the code for the ordered_set
implementation can be reused as is. To see how operations from the ETS API that atomically
operate on several keys can be implemented in CA trees and for memory management issues refer
to a paper published at the Erlang Workshop [13].

A taste of CA trees’ performance In the same paper [13], we conducted extensive performance
and scalability evaluations for the new table types (AVL-based and Treap-based CA trees). We
compared the new table types with the current implementations of ordered_set and set in various
scenarios. We refer the interested reader to that paper for the complete set of the results, but we
also include selected results here. The machine used is the same as before (see page 15), but we
used Erlang/OTP 17.0 as a basis for our prototype and for comparison.

Figure 9 shows the scalability of the different ETS table variants as the number of schedulers
(threads) increases. Note that in contrast to the previous graphs, the y-axis of these graphs shows
throughput (i.e., the higher the better), not runtime. The results show the CA trees provide
very good scalability (esp. compared with the current implementation of ordered_set) and also
outperform all other table types when several NUMA nodes are used. It is not surprising that the
CA trees perform better than the ordered_set protected by a single readers-writer lock. On the
other hand, it is less obvious why they scale better than set with fine-grained locking. One reason
could be the set’s contended hot spots discussed earlier. Another point worth noting about the
fine-grained locking in set is that its implementation currently contains a limited number of bucket
locks (64 in Erlang/OTP 17.x) while the CA trees can adapt the number of locks that are used
to the current contention level. A CA tree will also adapt to situations where the contention is
distributed unevenly over the key range and create the fine-grained locks where needed.

Discussion and future work First of all, some work is still needed to make contention adapting
trees ready for inclusion in the ETS code of the Erlang/OTP distribution. The code needs to be
refactored to conform to Erlang/OTP runtime system’s coding conventions. More importantly,
support for the full ETS API needs to be implemented, but, as explained, we expect that this will
be a relatively easy task.

If it is decided to integrate CA trees into ETS, one also has to choose the way that this should
be done. One alternative is to replace the ordered_set implementation with the AVL-CA tree.
This way the read-only scenarios will get slightly worse performance and scalability than presently.
Another alternative would be to add an additional table type. The disadvantage of this approach
is that it will complicate the ETS programming interface and add to the decision making process

ICT-287510 (RELEASE) March 17, 2015 21

12

10 .
—4 set
#—4 ordset 10t
o 8 % AVLCAtree || =
S b—b Treap-CAtreq| o ol
3 T 3
5o ‘ S
z 6
wn w
c c
S a4t S
3 % a4
g g 3 set
° Ll © & ordset
2r 9 AVL-CA tree |]
b4 Treap-CA tree
% 10 20 30 40 50 60 70 % 10 20 30 40 50 60 70
Number of Threads Number of Threads
(a) 100% updates (b) 50% updates and 50% lookups
20 : : . ’ ’ . 25
4 set
#—8 ordset
2 15 o 207| ¢—4 AVL-CA tree
§ § k4 Treap-CA tree
" w
g § 150
Z 10 =
" w
C c
S S 10t
© ©
8 9 set g
o 3y #—4 ordset 1 © sl
49— AVL-CA tree
k—4 Treap-CA tree
% 10 20 30 40 50 60 70 % 10 20 30 40 50 60 70
Number of Threads Number of Threads
(¢) 10% updates and 90% lookups (d) 1% updates and 99% lookups

Figure 9: Scalability of the CA tree variants compared to ordered_set and set in Erlang/OTP 17.0.

and possible experimentation and measurements that programmers have to do. Finally, a non
intrusive option would be to only use the AVL-CA tree when write_concurrency is activated on
an ordered_set table. This way the read-only cases can still get the current good performance and
scalability while the scalability problems that ordered_set currently has in scenarios that contain
write operations can be avoided.

3.4.3 More Scalable Locking Libraries for ETS

We have also experimented and proposed the use of a queue delegation locking library [7] for the locks
used in the implementation of ETS. Queue Delegation (QD) locking [8], is a new efficient delegation
algorithm whose idea is simple. When, e.g., a shared data structure protected by a single lock is
contended, the threads do not wait for the lock to be released. Instead, they try to delegate their
operation to the thread currently holding the lock (called the helper). If the operation does not read
from the shared structure, successful delegation allows a thread to immediately continue execution,
possibly delegating more operations or doing other work. The helper thread is responsible for
eventually executing delegated operations in the order they arrived to ensure linearizability. Most
kinds of critical sections can be delegated with this scheme, and waiting is only needed when effects
of a critical section need to be visible. We refer the reader to the paper [8] describing QD locking in
detail for more information on its implementation and its properties. Below we describe the steps
we went through when porting the ETS code to use an MRQD (Multiple Readers Queue Delegation)
lock instead of a readers-writer lock and the performance we got.

Porting The porting focussed on the ETS operations insert, delete and lookup. The first two
operations are interesting since they do not have any return value and can thus be delegated to the
current lock holder without any need for the process issuing them to wait for their execution. On

ICT-287510 (RELEASE) March 17, 2015 22

the other hand, the lookup operation needs to wait for its result. We divided the porting work into
three steps of increasing difficulty, where each step produced working code that we could benchmark
to measure the resulting performance. We started from an ETS code base of eight files with a total
of 16277 lines of code.

1. (delegate and wait) In this step we just delegate the original critical section and wait for its
actual execution with the LL_delegate_wait function from the C queue delegation library.
Usually this works without any semantic change of the original code. However, if thread-local
variables are accessed inside the critical section, as was the case in the ETS code, care must
be taken so that the right thread-local variable is accessed. In the ETS code, the thread-local
variable access was subtle since it was done in the read-unlock call of a readers-writer lock.
To fix this issue we simply moved the read-unlock call after the issuing of the critical section.
Another way to deal with this problem would have been to pass a reference to the thread-local
variable to the delegated function. In total this step required changing about 400 lines of code
(60 of which were changes and 340 were additions, many to integrate with the existing locking
structure).

2. (delegate without wait) To delegate without waiting for the actual execution of the critical
section required more changes. The original code did some checking of parameters inside the
critical section that could result in a return value indicating an error. These checks did not
need to be done inside the critical section and could simply be lifted out. The parameters to
the insert and delete functions are allocated on the heap of the issuing process and can be
deallocated as soon as the functions have returned. Therefore it is not safe to send references
to these values to delegated critical sections. Instead, we changed the original code to allocate
a clone of the value and send a reference to the clone. For the insert case, the clone is in
a form that can be inserted directly into the table data structure. The effort of allocating a
clone is therefore not wasted since a clone would need to be created anyway to store the object.
Furthermore, since the cloning is done outside the critical section, this modification can also
decrease the length of the critical section. However, if the object being inserted is replacing an
existing larger object, the original code had less memory management cost because it would
just overwrite the existing object. For the delete operation, both the allocation of the cloned
key and its subsequent freeing incurs an overhead compared to the original code. This step
required changes in about 400 more lines of code (760 if one starts counting the differences
from the original code).

3. (delegate and copy directly into the QD queue) In this step we got rid of the need to do more
memory management than the original code by copying all parameters needed in the critical
section directly into the queue buffer of the QD lock. This also had the benefit of improving the
cache locality for the helper thread that is executing the critical sections. The only additional
porting effort required in this step was the serialization of the key and the object to a form
that can be stored directly into the QD queue. This step required changing only about 100
more lines of code.

Performance evaluation Once again, we used ets_bench to evaluate the performance and scala-
bility of ETS tables of type ordered_set after applying each porting step described in the previous
section. As mentioned, ets_bench measures the performance of ETS under variable contention levels
and distributions of operations. We ran the benchmark on the machine we described on page 15 and
all code was compiled using GCC version 4.7.2 with -O3. We pinned the software threads to logical
processors so that the first eight software threads in the graphs were pinned to separate cores. Each
configuration was run three times and we report the average run time.

The update only scenario presented in Figure 10a shows the run time of N Erlang processes
performing 222 /N operations each. The inserted objects are Erlang tuples with an integer key ran-
domly selected from the range [0,2'6]. The operations are insert or delete with equal probability.

ICT-287510 (RELEASE) March 17, 2015 23

T 25 T T T T T T T T
l e /_\/w——/ 4 MRQD-wait
1 > #—8 MRQD-malloc

2.0r % MRQD-copy ||
i~ DR-MCS
| ¥—¥ CC-Synch |

-
5

3 8 M Default
g #—4 MRQD-wait 81,

1.5¢ #—48 MRQD-malloc|{ -

4—% MRQD-copy
Loy i DR-MCS 1 osl
0.5 ¥—+¥ CC-Synch
Default
0.0 s ‘ ‘ 0.0 s s s s s s s s
0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16
Threads Threads
(a) 100% updates (b) 80% lookups and 20% updates

Figure 10: Scalability benchmarks for ETS. Dataset size is 2'6.

The line labeled Default represents the readers-writer lock currently used by ETS. It is optimized
for frequent reads and the uncontended case. Therefore, it does not scale well with parallel writers.
We also include the state-of-the-art readers-writer lock DR-MCS presented by Calciu et al. [4]. The
MCS lock [10] that DR-MCS uses to synchronize writers is good at minimizing cache coherence
traffic in the lock hand over. However since MCS is a queue-based lock, the thread that executes
critical sections is likely to alternate between the cores. This is causing a lot of expensive cache
coherence traffic inside the critical section which is one reason why its performance is worse than
all delegation-based locks.

CC-Synch [6] is included in our comparison to show an alternative delegation locking mechanism
that can be used with the same interface as QD locking. MRQD-copy, which is corresponding
to porting step 3 in the previous section, performs best in all contended cases. MRQD-copy is
closely followed by MRQD-wait, CC-Synch (both step 1) and MRQD-malloc (step 2). MRQD-wait,
CC-Synch and MRQD-malloc are almost indistinguishable except for the case with two threads.
MRQ@D-malloc performs better in this case because of its ability to continue directly after delegating
work.

In Figure 10b we show the performance when 80% of the operations are lookups and the
rest are inserts and deletes with equal probability. Unsurprisingly, since they use the same
read synchronization algorithm, the order between MRQD-copy, MRQD-malloc, MRQD-wait and
DR-MCS is the same as in the update only scenario. With 99% lookup operations the difference
between MRQD-copy, MRQD-malloc, MRQD-wait and DR-MCS is very small, but the performance
advantage of the four delegation-based algorithms gets larger and larger with more updates.

3.4.4 More Scalable Alternatives to Meta Table Locking

As described in Section 3.1, the ETS meta table is an internal data structure that maps table
identifiers to the corresponding table data structures. The elements in the meta table are protected
by readers-writer locks that we call meta table locks. The writer part of a meta table lock is only
taken when tables are created or deleted. However, a meta table lock is acquired for reading every
time a process executes an ETS operation. This lock might be a scalability problem since, if many
processes access a single table frequently, there can be contention on memory bandwidth due to the
write accesses to take the read lock.

In a prototype implementation of the Erlang VM, we have completely removed the need for meta
table locks. Instead, the meta table is read and modified by atomic instructions. This approach
leaves only ETS deletion as a problem, as tables can be deleted while readers access the data
structure. To solve this issue, we have added a scheduler local pointer to the ETS table that is
currently being accessed. The scheduler local ETS pointer is from here on simply called ETS pointer.
Before a table is deallocated it is first marked as dead in the meta table and then the thread blocks
until no ETS pointer is pointing to the ETS table.

ICT-287510 (RELEASE) March 17, 2015 24

In another prototype, an alternative locking scheme for the table lock based on the ETS pointers
was tested. In this locking scheme a read is indicated by setting the ETS pointer for the scheduler.
This approach to read indicating is similar to the lock reader groups implementation described in
Section 3.2.2 but with the advantage of using less memory. One disadvantage of the ETS pointer
approach, compared to reader groups, is that in some scenarios it might be more expensive for
writes, since ETS pointers might be modified because of reads in other tables which might cause an
additional cache miss for the writer. The cache miss happens because a write instruction issued by
one core invalidates the corresponding cache line in the private cache of all other cores. However, the
extra memory that is required by the reader groups approach might also cause more cache misses
if the cache is too small to fit all memory.

4 Scalable Tracing Support for Profiling and Monitoring

This section presents the results of our work in providing improved support for DTrace/SystemTap
in Erlang/OTP. It is divided into two parts: one describing probes related to the back-end for both
offline and online profiling tools (such as Percept and Devo), and one describing probes specific for
SD Erlang. The results of our early work on this front were presented in Deliverable D2.2 and most
of the implemented probes were introduced in Deliverable D5.2, alongside with the description of
the profiling tools — they are repeated here, as they can be useful as parts of the VM, not tied to
any specific set of profiling tools.

4.1 DTrace/SystemTap back-end for offline/online profiling and monitoring

In the first year of the project, we designed, implemented and delivered the first version of a new
back-end for Percept that uses DTrace or SystemTap to collect the information that Percept’s
current back-end collects using Erlang built-in tracing and profiling mechanism. Since then, this
back-end was enhanced, primarily in order to be able to profile distributed applications according
to the revised architecture that is shown in Figure 7 of the revised Deliverable D5.1.

A number of profile and trace flags were introduced, so that users can specify the events that
they need to trace. Each of these flags is mapped to a set of DTrace probes that need to be enabled.
So, based on the specified profile and trace flags, the D or SystemTap script, which is to be executed
on the application nodes, is generated dynamically. While profiling an application, the user can
at any point start tracing one or more application nodes, stop tracing one or more other nodes,
or modify the events that they need to trace. The back-end was extended to be used in Percept’s
extension: Percept2.

A number of new probes were introduced after the first year of the project, to enable back-ends
for online profiling and monitoring tools. As mentioned in the relevant section of Deliverable D5.2,
the events that were to be traced by such tools are: process migrations, run queue sizes, inter-node
message passing and events related to SD Erlang. Apart from the latter, which are described in
detail in Section 4.2, the probes required to support these events are described below. For each
probe, the description contains the event that causes it, the names and the types of its parameters,
and the kind of information that is passed to them.

Probe: run_queue-create
Fired: whenever a run queue is created

Header:

probe run_queue__create(int rqid)
Parameters:

e rqid: the ID of the run queue

ICT-287510 (RELEASE) March 17, 2015 25

Probe: run_queue-enqueue
Fired: whenever a process is added to a run queue
Header:

probe run_queue__enqueue(char *p, int priority, int rqid, int rqgsize)

Parameters:

p: the PID of the process

priority: the priority of the process

rqid: the ID of the run queue

e rgsize: the size of the run queue (after the addition)

Probe: run_queue-dequeue

Fired: whenever a process is removed from a run queue

Header:

probe run_queue__dequeue(char *p, int priority, int rqid, int rgsize)

Parameters:

p: the PID of the process

priority: the priority of the process

rqid: the ID of the run queue

rgsize: the size of the run queue (after the removal)

Probe: process-migrate
Fired: whenever a process migrates from one run queue to another
Header:
probe process__migrate(char *p, int priority, int fromrqid, int fromrgsize,

int torqgid, int torgsize)

Parameters:

p: the PID of the process
e priority: the priority of the process
e fromrqid: the ID of the run queue, from which the process was removed

e fromrgsize: the size of the run queue, from which the process was removed (after the
removal)

e torqid: the ID of the run queue, to which the process was added

e torgsize: the size of the run queue, to which the process was added (after the addition)

By adding new DTrace probes in order to export from the runtime system information that was
not supported by the existing probes (e.g., the run queue sizes), we avoided the use of any sampling
techniques.

ICT-287510 (RELEASE) March 17, 2015 26

4.2 DTrace probes for SD Erlang

SD Erlang has been essentially designed as a tweaked version of Erlang’s kernel application. This
leads to the observation that tracing specific events that are related to s_groups implies tracing calls
of specific Erlang functions. So, in order to trace s_group-related events using DTrace or SystemTap,
we had two options.

Our first option was to use the global__function__entry probe, and to use our D or SystemTap
script to filter out any irrelevant function calls.

Probe: global-function-entry
Fired: whenever an external function is called

Header:

probe global__function__entry(char *p, char *mfa, int depth, uint64_t ts)

Parameters:

p: the PID of the caller
mfa: the MFA for the called function
depth: the stack depth

ts: the timestamp (in microseconds)

Our second option was to use one or more of the 951 user_trace__n* “user” probes. The
integer that follows n in the name of the probe is the probe number. These probes can be triggered
from inside the s_group module, whenever something interesting happens (e.g., a new s_group is
created). The user tag for all these probes is set to “s_group”.

Probe: user_trace-n0

Fired: whenever any of the pn functions of the dyntrace module is invoked with 0 as its
first argument

Header:

probe user_trace__nO(char *proc, char *user_tag, int il, int i2, int i3, int i4,
char *s1, char *s2, char *s3, char *s4)

Parameters:

e proc: the PID of the process that fired the probe
e user_tag: a user tag

e il: an integer

e i2: an integer

e i3: an integer

e i4: an integer

e sl: a string

e s2: a string

e s3: a string

e s4: a string

We finally chose to take advantage of the “user” probes, and moreover to connect each type of
s_group-related events that we are interested in to one such probe. The correspondence between
s_group events and probe numbers, as well as the information that these probes are expected to
carry are shown in Table 2.

ICT-287510 (RELEASE) March 17, 2015 27

’ Event ‘ Probe number | Arguments
Creation s_group 0 sl: the group name
Deletion of s_group 1 sl: the group name
Addition of a node into 2 sl: the group name, s2: the node name
an s_group
Removal of a node from 3 sl: the group name, s2: the node name
an s_group

Table 2: Correspondence between s_group events and probe numbers.

Note that based on the above table, the call of an s_group function might cause more than one
probe to be fired. For example, a call to the s_group:new_s_group/2 will fire one user_trace-n0
probe for the creation of the new s_group, and one more user_trace-n2 probe for each one of the
nodes that are contained in the list that is passed as a second argument to this function call.

The advantages of using “user” probes to trace s_group events are that it does not involve any
irrelevant probe firings, which need to be ignored, and that it allows us to have an even more
fine-grained control on the s_group events we want to trace (e.g., we can trace only creations of
s_groups). On the other hand, our approach has the disadvantage that, since at the moment there
is no way to reserve a specific probe label, anyone can end up using the same probe number to trace
some other type of events.

5 Efficient Support for Benchmarking and Profiling Sim-Diasca

Sim-Diasca is a discrete-time simulation engine developed by EDF and designed to be applied to
large-scale complex systems. One of the goals of RELEASE is to demonstrate how Erlang appli-
cations scale on clusters of multicore machines, how the scalability improvements of the Erlang
VM and the command-line options that it offers affect the performance of these applications, and
how tools developed by the RELEASE project can be used to identify bottlenecks in these applica-
tions. This section describes the actions that needed to be taken in order to explore the internals of
Sim-Diasca using two of the tools that have been developed by RELEASE: BenchErl and Percept2.

5.1 BenchErl

BenchErl [3] is a scalability benchmark suite for applications written in Erlang, developed by
RELEASE and described in Deliverable D2.1. As a first step in detecting potential problems
in the implementation of Sim-Diasca, BenchErl was used in order to collect information about how
Sim-Diasca scales with more VM schedulers, more hosts (i.e. computing nodes), different OTP
releases, or different command-line arguments. But, in order to run Sim-Diasca from BenchErl, we
first needed to overcome the following two problems:

e that the launching of all user and computing nodes was part of the application code, and

e that most of the parameters we wanted BenchErl to be able to control and vary were either
hard-coded in some piece of Erlang code or hidden in some BASH script.

Essentially, what we did was move all the code that had to do with node launching from Sim-Diasca
to BenchErl, and then prevent Sim-Diasca form either launching any nodes itself or shutting down
any existing nodes that it finds. With these changes, the latest version of Sim-Diasca (2.2.8) is in
the list of available benchmarks that one can use from BenchErl.

5.2 Percept2

The second tool that was used with Sim-Diasca was Percept2, a ocncurrency profiling tool for Erlang
applications. The main purpose for using Percept2 was to dig into the internals of Sim-Diasca by

ICT-287510 (RELEASE) March 17, 2015 28

collecting information during its execution: how many processes it spawns, how many ports it opens,
how many messages are sent, etc. Unfortunately, although Sim-Diasca is a distributed application,
the current version of Percept2 does not run in a distributed mode: Percept2 can only profile the
node where it is started. So, in order to profile Sim-Diasca we needed to start Percept2 on each
computing node. But we had to make sure that Percept2 was started neither too early (so it would
not capture information that was not related to the actual simulation, but rather, for example, with
its setup) nor too late (so it would not lose any information from the simulation execution). In order
to achieve this, we made use of the plugin mechanism provided by Sim-Diasca: we wrote a plugin
that, as soon as the simulation starts, goes to each of the computing nodes and starts Percept2,
and, as soon as the simulation ends, it stops Percept2 on all computing nodes that are involved in
the simulation execution. That way, we end up with one file for each computing node that we can
later analyze and visualize using Percept2.

6 Scalability of the VM Across Erlang/OTP Releases

We also used BenchErl to measure how VM improvements in different Erlang/OTP releases during
the duration of the RELEASE project have affected the scalability and performance characteristics
of the system. Note that this refers to the VM and is the context of a single Erlang node. For our
evaluation, we chose each of the major release of the Erlang/OTP system (R15B, R16B and 17.0)
and, for each major, one of their minor releases (R15B02, R16B03-1 and 17.4). The machine used
is the one described in Section 3.3. Recall that the machine has four chips (NUMA nodes) of
eight physical (sixteen logical) cores each, allowing the VM of a single Erlang node to use up to 64
schedulers.

Results from a selected set of BenchErl benchmarks can be seen in Figures 11-15. Observe that
the x-axis of all graphs uses a logarithmic scale. From these graphs, some general observations can
be made:

e In absolute terms, the performance of the VM has occasionally (Figure 14a) though not always
improved with time. To see the latter, cf. the lines in Figure 11a showing that the 17.x releases
have worse performance than prior releases. A similar situation is shown in Figure 15a.

e On the other hand, what has clearly improved over time compared to the R15 (mainly) and
R16 releases (to some extent) is the performance and scalability of the 17.x releases when
the number of schedulers is high (16 and above). See for example the speedups graphs in
Figures 11b and 12b but also the runtime graphs in Figures 12a, 14a and 15.

e Newer Erlang/OTP releases have become more effective in “protecting” themselves from per-
formance degradation in cases where the scalability of applications is hindered for some reason,
e.g., the hardware characteristics. In programs where it is difficult to achieve speedups beyond
one NUMA node, such as pcmark (Figure 13a), the performance degradation as the processes
run on more and more NUMA nodes is not as big in the 17.x releases compared to prior
Erlang/OTP releases.

7 Concluding Remarks

We have described changes and improvements to several key components of the Erlang Virtual
Machine that have improved its robustness, scalability and responsiveness on big modern multicores.
In short, we have presented:

e Two new additions to the Erlang Virtual Machine (VM), namely a scheduler utilization bal-
ancing mechanism and the ability to interrupt long running garbage collecting BIF's, that
improve the responsiveness of the Erlang/OTP system.

ICT-287510 (RELEASE) March 17, 2015

40 : ‘ ‘ ‘ ‘
— R15B
351 e—e R15B02 ||
=8 R16B01
30l a—a R16B03-1]|
17.0
= 25) 17.4
°
=
S
L]
2
[}
£
=
0 L L L L

30

29

25

20

15

Speedup

10

[

=—a R16B01

>
>

e—e 17.0

R15B
R15B02

R16B03-1

17.4

1 2 4 8
Number of Threads

64

(a) mbrot runtime

2 4 8 16 32

Number of Threads

64

(b) mbrot speedup

Figure 11: Runtimes and speedups of different Erlang/OTP releases running the mbrot benchmark.

30 T T T T T 8 T T T T T
»— R15B »~— R15B R
e—e R15B02 Jl| e R15B02
25 =—a R16BO1 | =—a R16B01
s—a R16B03-1 s R16B03-1
—e 17.0 6r| e—e 17.0
22 —0 17.4 — 17.4
©
g ! r
é 15-
()
£ I
£
10}
5> L
0 1 1 1 1 1 1 i i i L L
1 2 4 8 16 32 64 1 2 4 8 16 32 64

Number of Threads

(a) moves runtime

Number of Threads

(b) moves speedup

Figure 12: Runtimes and speedups of different Erlang/OTP releases running the moves benchmark.

16 T T T T T 5.5 T T T T T
»=— R15B »—+ R15B
e—e R15B02 || 5.0 R15B02 |-
=—s R16B01 =—a R16B01
a4 R16B03-1 4.5 a—a R16B03-1|]
17.0 1 A —e 17.0
_ 17.4 4.0 — 17.4
E
Q
g -S 3.5 4
) o
g ’
[A
2.5¢ T
2.0F 4
1.5¢ 4
2 1 1 1 1 1 10 1 1 1 1 1
1 2 4 8 16 32 64 1 2 4 8 16 32 64

Number of Threads

(a) pcmark runtime

Number of Threads

(b) pcmark speedup

Figure 13: Runtimes and speedups of different Erlang/OTP releases running the pcmark benchmark.

ICT-287510 (RELEASE) March 17, 2015

12

10f

Time (Seconds)
(=2

[

=—= R16BO1 |]

>
B>

Il

R15B
R15B02

R16B03-1
17.0

17.4

Speedup

16

30

R15B
R15B02
=—a R16B01
R16B03-1
17.0
17.4

[

14f

-
N
T
>
B>

Il

10

Number of Threads

(a) ran runtime

32 64

=
N
s

8 16 32
Number of Threads

(b) ran speedup

64

Figure 14: Runtimes and speedups of different Erlang/OTP releases running the ran benchmark.

Time (Seconds)

o—e R15B02
=—a R16B01

>
>

Il

R15B

R16B03-1
17.0
17.4

Speedup

25

»~—+ R15B
R15B02
R16B01
R16B03-1
17.0

o 0
20+
A—h
o—a

—o

17.4

Number of Threads

(a) orbit runtime without intra-worker parallelism

(b) orbit speedup without intra-worker parallelism

=
N
ot

8 16 32
Number of Threads

64

45 ‘ 12 . : : . .
»~—+ R15B ~—+ R15B
4.0 o—e R15B02 | o—o R15B02
=—a R16B01 10f(m—a R16B01
35 a—a R16B03-1|] a—4 R16B03-1
e—e 17.0 e—e 17.0
_ 39 —0 17.4 8lo— 17.4
el
S 2.5}
(%3
& 6l
o 2.0f
£
£
1.5t af
1.0t
2+
0.5
00 1 1 1 1 1 0 L L L L L
1 2 4 8 16 32 64 1 2 4 8 16 32

Number of Threads

(c) orbit runtime with intra-worker parallelism

Number of Threads

(d) orbit speedup with intra-worker parallelism

64

Figure 15: Runtimes and speedups of different Erlang/OTP releases running the orbit benchmark.

ICT-287510 (RELEASE) March 17, 2015 31

e Changes to the memory carrier migration mechanism, a new super carrier memory allocation
scheme, and the new scheme for time management in the VM.

e A detailed description of the implementation of the Erlang Term Storage (ETS) and a study
of the scalability and performance improvements to ETS across Erlang/OTP releases.

e New designs for ETS’ implementation that improve its performance and scalability further.

e Scalable tracing support for profiling and monitoring SD Erlang applications.

Many of these changes have already found their place in an Erlang/OTP release (see also the
information in the Appendix), and are used by the Erlang community. Most of the remaining
changes currently exist in development branches of the system and are already scheduled to become
part of an Erlang/OTP release in the near future. We hope that even those currently in prototype
stage will soon also join them.

Change Log

Version Date Comments
0.1 17/3/2015 | First Version Submitted to the Commission Services

References

1]

2]

G. Adelson-Velskii and E. M. Landis. An algorithm for the organization of information. In
Proceedings of the USSR Academy of Sciences, volume 146, pages 263-266, 1962. In Russian.

C. R. Aragon and R. G. Seidel. Randomized search trees. In Proceedings of the 30th Annual
Symposium on Foundations of Computer Science, pages 540-545, Oct. 1989. doi: 10.1109/
SFCS.1989.63531. URL http://dx.doi.org/10.1109/SFCS.1989.63531.

S. Aronis, N. Papaspyrou, K. Roukounaki, K. Sagonas, Y. Tsiouris, and I. E. Venetis. A
scalability benchmark suite for Erlang/OTP. In Proceedings of the Eleventh ACM SIGPLAN
Workshop on Erlang, pages 33-42. ACM, 2012. ISBN 978-1-4503-1575-3. doi: 10.1145/2364489.
2364495. URL http://doi.acm.org/10.1145/2364489.2364495.

I. Calciu, D. Dice, Y. Lev, V. Luchangco, V. J. Marathe, and N. Shavit. NUMA-aware reader-
writer locks. In Proceedings of the 18th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, pages 157-166. ACM, 2013. ISBN 978-1-4503-1922-5. doi: 10.1145/
2442516.2442532. URL http://doi.acm.org/10.1145/2442516.2442532.

CAtrees. CA Trees. http://www.it.uu.se/research/group/languages/software/ca_tree.

P. Fatourou and N. D. Kallimanis. Revisiting the combining synchronization technique. In
Proceedings of the 17th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, pages 257-266, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1160-1. doi:
10.1145/2145816.2145849. URL http://doi.acm.org/10.1145/2145816.2145849.

D. Klaftenegger, K. Sagonas, and K. Winblad. Delegation locking libraries for improved per-
formance of multithreaded programs. In Furo-Par 2014, Proceedings of the 20th International
Conference, volume 8632 of LNCS, pages 572-583. Springer, 2014. Preprint available from
http://www.it.uu.se/research/group/languages/software/qd_lock_lib.

D. Klaftenegger, K. Sagonas, and K. Winblad. Queue delegation locking, 2014. Available from
http://www.it.uu.se/research/group/languages/software/qd_lock_lib.

P.-A. Larson. Linear hashing with partial expansions. In Proceedings of the Sizth International
Conference on Very Large Data Bases, pages 224-232. VLDB Endowment, 1980.

http://dx.doi.org/10.1109/SFCS.1989.63531
http://doi.acm.org/10.1145/2364489.2364495
http://doi.acm.org/10.1145/2442516.2442532
http://www.it.uu.se/research/group/languages/software/ca_tree
http://doi.acm.org/10.1145/2145816.2145849
http://www.it.uu.se/research/group/languages/software/qd_lock_lib
http://www.it.uu.se/research/group/languages/software/qd_lock_lib

ICT-287510 (RELEASE) March 17, 2015 32

[10]

[11]

J. M. Mellor-Crummey and M. L. Scott. Algorithms for scalable synchronization on shared-
memory multiprocessors. ACM Trans. Comput. Syst., 9(1):21-65, Feb. 1991. ISSN 0734-2071.
doi: 10.1145/103727.103729. URL http://doi.acm.org/10.1145/103727.103729

M. S. Papamarcos and J. H. Patel. A low-overhead coherence solution for multiprocessors
with private cache memories. In Proceedings of the 11th Annual Symposium on Computer
Architecture, pages 348-354. ACM, 1984. ISBN 0-8186-0538-3. doi: 10.1145/800015.808204.
URL http://doi.acm.org/10.1145/800015.808204.

K. Sagonas and K. Winblad. Contention adapting trees. Tech. Report, available in [5], 2014.

K. Sagonas and K. Winblad. More scalable ordered set for ETS using adaptation. In Pro-
ceedings of the Thirteenth ACM SIGPLAN Workshop on Erlang, pages 3—11. ACM, Sept.
2014. ISBN 978-1-4503-3038-1. doi: 10.1145/2633448.2633455. URL http://doi.acm.org/
10.1145/2633448.2633455.

http://doi.acm.org/10.1145/103727.103729
http://doi.acm.org/10.1145/800015.808204
http://doi.acm.org/10.1145/2633448.2633455
http://doi.acm.org/10.1145/2633448.2633455

ICT-287510 (RELEASE) March 17, 2015 33

A Virtual Machine Improvements in Erlang/OTP Releases

In this appendix we list changes and improvements that affect scalability, reliability and respon-
siveness of the Erlang Runtime System, which have made it into the Erlang/OTP system in one of
its public releases during the duration of the RELEASE project. Naturally, major releases of the
system (R15B, R16B, and 17.0) contain significantly many more changes and improvements than
minor releases (R15B01, R15B02, R15B03, R16B01, R16B02, R16B03, 17.1, 17.3, and 17.4).

A.1 TImprovements in Erlang/OTP R15B (2011-12-14)

e A number of memory allocation optimizations have been implemented. Most of them reduce
contention caused by synchronization between threads during allocation and deallocation of
memory. Most notably:

— Synchronization of memory management in scheduler specific allocator instances has
been rewritten to use lock-free data structures.

— Synchronization of memory management in scheduler specific pre-allocators has been
rewritten to use lock-free data structures.

— The mseg_alloc memory segment allocator now uses scheduler specific instances instead
of one global instance. Apart from reducing contention this also ensures that memory
allocators always create memory segments on the local NUMA node on NUMA systems.

e The API of the ethread atomic memory operations used by the runtime system has been
extended and improved. The library now also performs runtime tests for presence of hardware
features, such as for example SSE2 instructions, instead of requiring this to be determined
at compile time. All uses of the old deprecated atomic API in the runtime system have
been replaced with the use of the new atomic API, a change which in many places implies a
relaxation of memory barriers used.

e The Erlang Runtime System (ERTS) internal system block functionality has been replaced by
new functionality for blocking the system. The old system block functionality had contention
issues and complexity issues. The new functionality piggy-backs on thread progress tracking
functionality needed by newly introduced lock-free synchronization in the runtime system.
When the functionality for blocking the system is not used, there is practically no overhead.
This since the functionality for tracking thread progress is there and needed anyway.

e An ERTS internal, generic, many to one, lock-free queue for communication between threads
has been introduced. The many to one scenario is very common in ERTS, so it can be used
in a lot of places in the future. Currently it is used by scheduling of certain jobs and the
asynchronous thread pool, but more uses are planned for the future.

— Drivers using the driver_async functionality are not automatically locked to the system
anymore, and can be unloaded as any dynamically linked in driver.

— Scheduling of ready asynchronous jobs is now also interleaved in between other jobs.
Previously all ready asynchronous jobs were performed at once.

e The runtime system does not bind schedulers to logical processors by default anymore. The
rationale for this change is the following: If the Erlang runtime system is the only operating
system process that binds threads to logical processors, this improves the performance of
the runtime system. However, if other operating system processes (as for example another
Erlang runtime system) also bind threads to logical processors, there might be a performance
degradation instead. In some cases this degradation might be severe. Due to this, there was
a change in the default setting so that the user is required to make an active decision in order
to bind schedulers.

ICT-287510 (RELEASE) March 17, 2015 34

A.2

A.3

A4

A.5

Improvements in Erlang/OTP R15B01 (2012-04-02)

Added erlang:statistics(scheduler_wall time) to ensure correct determination of sched-
uler utilization. Measuring scheduler utilization is strongly preferred over CPU utilization,
since CPU utilization gives very poor indications of actual scheduler/VM usage.

Improvements in Erlang/OTP R15B02 (2012-09-03)

A new scheduler wake up strategy has been implemented. For more information see the
documentation of the +sws command line argument of erl.

A switch for configuration of busy wait length for scheduler threads has been added. For more
information see the documentation of the +sbwt command line argument of erl.

Improvements in Erlang/OTP R15B03 (2012-12-06)

The frequency with which sleeping schedulers are woken due to outstanding memory deallo-
cation jobs has been reduced.

Improvements in Erlang/OTP R16B (2013-02-25)

Various process optimizations have been implemented. The most notable of them are:

— New internal process table implementation allowing for both parallel reads as well as
writes. Especially read operations have become really cheap. This reduces contention in
various situations (e.g., when spawning or terminating processes, sending messages, etc.)

— Optimizations of run queue management reducing contention.

— Optimizations of process state changes reducing contention.

Non-blocking code loading. Earlier when an Erlang module was loaded, all other execution
in the VM was halted while the load operation was carried out in single threaded mode. Now
modules are loaded without blocking the VM. Processes may continue executing undisturbed
in parallel during the entire load operation. The load operation is completed by making the
loaded code visible to all processes in a consistent way with one single atomic instruction. Non-
blocking code loading improves the real-time characteristics of applications when modules are
loaded or upgraded on a running SMP system.

Major port improvements. The most notable of them are:

— New internal port table implementation allowing for both parallel reads as well as writes.
Especially read operations have become really cheap. This reduce contention in various
situations. For example when, creating ports, terminating ports, etc.

— Dynamic allocation of port structures. This allows for a much larger maximum amount
of ports allowed as a default. The previous default of 1024 has been raised to 65536.
Maximum amount of ports can be set using the +Q command line flag of erl.

— Major rewrite of scheduling of port tasks. Major benefits of the rewrite are reduced
contention on run queue locks, and reduced amount of memory allocation operations
needed. The rewrite was also necessary in order to make it possible to schedule signals
from processes to ports.

— Improved internal thread progress functionality for easy management of unmanaged
threads. This improvement was necessary for the rewrite of the port task scheduling.

— Rewrite of all process to port signal implementations in order to make it possible to
schedule those operations. All port operations can now be scheduled which allows for
reduced lock contention on the port lock as well as truly asynchronous communication
with ports.

ICT-287510 (RELEASE) March 17, 2015 35

— Optimized lookup of port handles from drivers.
— Optimized driver lookup when creating ports.

— Preemptable erlang:ports/0 BIF.
These changes imply changes of the characteristics of the system. The most notable are:

Order of signal delivery. The previous implementations of the VM delivered signals from
processes to ports in a synchronous fashion, which was stricter than required by the
language. Starting with Erlang/OTP R16B, signals are truly asynchronously delivered.
The order of signal delivery still adheres to the requirements of the language, but only
to those. That is, some signal sequences that previously always were delivered in one
specific order may now from time to time be delivered in different orders.

Latency of signals sent from processes to ports. Signals from processes to ports where
previously always delivered immediately. This kept latency for such communication to a
minimum, but it could cause lock contention which was very expensive for the system as a
whole. In order to keep this latency low also in the future, most signals from processes to
ports are by default still delivered immediately as long as no conflicts occur. An example
of such a conflict is not being able to acquire the port lock. When such conflicts occur, the
signal will be scheduled for delivery at a later time. A scheduled signal delivery may cause
a higher latency for this specific communication, but improves the overall performance of
the system since it reduces lock contention between schedulers. The default behavior of
only scheduling delivery of these signals on conflict can be changed by passing the +spp
command line flag to erl. The behavior can also be changed on port basis using the
parallelism option of the open_port/2 BIF.

Execution time of erlang:ports/0. Since the erlang:ports/0 BIF now can be preempted,
the responsiveness of the system as a whole has been improved. A call to erlang:ports/0
may, however, take a much longer time to complete than before. How much longer time
heavily depends on the system load.

Reduction cost of calling driver callbacks. Calling a driver callback is quite costly. This
was previously not reflected in reduction cost at all. Since the reduction cost now has
increased, a process performing lots of direct driver calls will be scheduled out more
frequently than before.

e The default reader group limit has been increased to 64 from 8. This limit can be set using
the +rg command line argument of erl. This change of default value reduces lock contention
on Erlang Term Storage (ETS) tables using the read_concurrency option at the expense
of increased memory consumption when the amount of schedulers and logical processors are
between 8 and 64.

e Increased potential concurrency in ETS for write_concurrency option. The number of in-
ternal table locks has been increased from 16 to 64. This makes it four times less likely that
two concurrent processes writing to the same table would collide and thereby be serialized.
The cost is an increased constant memory footprint for tables using write_concurrency. The
memory consumption per inserted record is not affected. The increased footprint can be
particularly large if write_concurrency is combined with read_concurrency.

e The scheduler wake up strategy implemented in Erlang/OTP R15B02 is now used by default.
This strategy is not as quick to forget about previous overload as the previous strategy. This
change implies changes of the system’s characteristics. Most notable: When a small overload
comes and then disappears repeatedly, the system will be willing to wake up schedulers for
slightly longer time than before. Timing in the system will also change, due to this.

e The +stbt command line argument of erl was added. This argument can be used for trying
to set scheduler bind type. Upon failure unbound schedulers will be used.

ICT-287510 (RELEASE) March 17, 2015 36

A.6

A7

A.8

A.9

Improvements in Erlang/OTP R16B01 (2013-06-18)

Introduced support for migration of memory carriers between memory allocator instances.
This feature is not enabled by default and does not affect the characteristics of the system.
However, when enabled, it has the effect of reducing memory footprint when the memory load
is unevenly distributed between scheduler specific allocator instances.

Improvements in Erlang/OTP R16B02 (2013-09-18)

New allocator strategy aoffcbf (address order first fit, carrier best fit). Supports carrier mi-
gration but with better CPU performance than aoffcaobf.

Added command line option to set schedulers by percentages. For applications that show
enhanced performance from the use of a non-default number of emulator scheduler threads,
having to accurately set the right number of scheduler threads across multiple hosts each with
different numbers of logical processors is difficult because the +S option requires absolute num-
bers of scheduler threads and scheduler threads online to be specified. To address this issue, a
+SP command line option was added to erl, similar to the existing +S option but allowing the
number of scheduler threads and scheduler threads online to be set as percentages of logical
processors configured and logical processors available, respectively. For example, +SP 50:25
sets the number of scheduler threads to 50% of the logical processors configured, and the
number of scheduler threads online to 25% of the logical processors available. The +SP option
also interacts with any settings specified with the +S option, such that the combination of op-
tions +8 4:4 +SP 50:50 (in either order) results in two scheduler threads and two scheduler
threads online.

Improvements in Erlang/OTP R16B03 (2013-12-09)

A new memory allocation feature called super carrier has been introduced. The super carrier
feature can be used in different ways. It can for example be used for pre-allocation of all
memory that the runtime system should be able to use. By default the super carrier is
disabled. It is enabled by passing the +MMscs <size in MB> command line argument.

Improvements in Erlang/OTP 17.0 (2014-04-07)

Migration of memory carriers has been enabled by default on all Erlang runtime system
internal memory allocators based on the alloc_util framework except for temp_alloc. That
is, +M<S>acul de is default for these allocators. Note that this also implies changed allocation
strategies for all allocators. They will all now use the address order first fit carrier best fit
strategy introduced in Erlang/OTP R16B02. By passing +Muacul 0 on the command line,
all configuration changes made by this change can be reverted.

This change improves the memory characteristics of the runtime system decreasing its memory
footprint at the expense of a small performance cost.

The garbage collection tenure rate has been increased. The garbage collector tries to maintain
the previous heap block size during a minor garbage collection, i.e. 'need’ is not utilized in
determining the size of the new heap; instead the collector relies on tenure and garbage to be
sufficiently large. Previously, in instances during intense growing with exclusively live data on
the heap coupled with delayed tenure, full sweeps would be triggered directly after a minor
garbage collection to make room for 'need’ since the new heap would be full. To remedy this,
the tenure of terms on the minor heap will always happen (if it is below the high watermark)
instead of every other minor garbage collection.

This change reduces the CPU time spent in garbage collection but may incur delays in col-
lecting garbage from the heap.

ICT-287510 (RELEASE) March 17, 2015 37

e An experimental dirty scheduler functionality has been introduced. This functionality can be
enabled by passing the command line argument --enable-dirty-schedulers to configure
when building the system.

e Uses of erlang:binary_to_term/1 now cost an appropriate amount of reductions and will
interrupt the process executing the function call and yield to the scheduler if the term passed
as their argument is big.

e Support for an LLVM backend has been added in the HiPE native code compiler.

A.10 Improvements in Erlang/OTP 17.1 (2014-06-24)

e The following native functions now cost an appropriate amount of reductions and yield the
process to the scheduler when out of reductions:
— erlang:binary_to_list/1
— erlang:binary_to_list/3
— erlang:bitstring to list/1
— erlang:list_to_binary/1
— erlang:iolist_to_binary/1
— erlang:list_to_bitstring/1
— binary:list_to_bin/1

This change impacts:

Performance: The functions converting from lists got a performance loss for very small lists,
and a performance gain for very large lists.

Priority: Previously a process executing one of these functions effectively got an unfair pri-
ority boost. This priority boost depended on the input size. The larger the input was,
the larger the priority boost got. This unfair priority boost is now lost.

A.11 Improvements in Erlang/OTP 17.3 (2014-09-17)

e Introduced the enif _schedule nif () function to the NIF API. This function allows a long-
running NIF to be broken into separate NIF invocations without the help of a wrapper func-
tion written in Erlang. The NIF first executes part of the long-running task, then calls
enif_schedule nif () to schedule a NIF for later execution to continue the task. Any num-
ber of NIFs can be scheduled in this manner, one after another. Since the emulator regains
control between invocations, this helps avoid problems caused by native code tying up sched-
uler threads for too long.

A.12 Improvements in Erlang/OTP 17.4 (2014-12-10)

e Introduced support for eager check I/0. When eager check /0 is enabled, schedulers will more
frequently check for I/O work. Outstanding I/O operations will however not be prioritized to
the same extent as when eager check I/0O is disabled.

By default eager check I/O is disabled and can be enabled using the erl command line
argument +secio true. Eager check I/O impacts the following characteristics of the Erlang
runtime system when enabled:

— Results in lower latency and smoother management of externally triggered I1/O opera-
tions.

— Results in slightly reduced priority of externally triggered 1/O operations.

ICT-287510 (RELEASE) March 17, 2015 38

e Optimization of atomic memory operations with release barrier semantics on 32-bit PowerPC.

e Improved support for atomic memory operations provided by the libatomic_ops library.
Most importantly support for use of native double word atomics when implemented by
libatomic_ops (for example, implemented for ARM).

e Minor adjustment of scheduler activation code making sure that an activation of a scheduler
is not prevented by its run queue being non-empty.

e Improved allocation carrier migration search logic. This reduces the risk of failed migrations
that could lead to excess memory consumption. It also improves SMP performance due to
reduced memory contention on the migration pool.

	Introduction
	Scalable Virtual Machine Architecture
	Scheduler Utilization Balancing
	Interruptible Garbage Collection
	Changes to Carrier Migration
	Searching the Pool
	Result and Further Work

	Super Carrier
	Problems
	Solution

	Time Management
	Time Retrieval
	Timer Wheel
	BIF Timer
	Benchmarks

	Scalable Erlang Term Storage
	Low-Level Implementation
	Improvements Between Erlang/OTP Releases
	Support for Fine Grained Locking
	Reader Groups for Increased Read Concurrency
	More Refined Locking and More Reader Groups

	Performance and Scalability Study
	Scalability of Hash-Based ETS Tables Across OTP Releases
	Effect of Tuning Options

	Towards ETS with Even Better Scalability
	Number of Bucket Locks
	Contention Adapting Trees for Ordered Set ETS Tables
	More Scalable Locking Libraries for ETS
	More Scalable Alternatives to Meta Table Locking

	Scalable Tracing Support for Profiling and Monitoring
	DTrace/SystemTap back-end for offline/online profiling and monitoring
	DTrace probes for SD Erlang

	Efficient Support for Benchmarking and Profiling Sim-Diasca
	BenchErl
	Percept2

	Scalability of the VM Across Erlang/OTP Releases
	Concluding Remarks
	Virtual Machine Improvements in Erlang/OTP Releases
	Improvements in Erlang/OTP R15B (2011-12-14)
	Improvements in Erlang/OTP R15B01 (2012-04-02)
	Improvements in Erlang/OTP R15B02 (2012-09-03)
	Improvements in Erlang/OTP R15B03 (2012-12-06)
	Improvements in Erlang/OTP R16B (2013-02-25)
	Improvements in Erlang/OTP R16B01 (2013-06-18)
	Improvements in Erlang/OTP R16B02 (2013-09-18)
	Improvements in Erlang/OTP R16B03 (2013-12-09)
	Improvements in Erlang/OTP 17.0 (2014-04-07)
	Improvements in Erlang/OTP 17.1 (2014-06-24)
	Improvements in Erlang/OTP 17.3 (2014-09-17)
	Improvements in Erlang/OTP 17.4 (2014-12-10)

